Design and simulation of a highly efficient eco-friendly, non-toxic perovskite solar cell

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
G. S. Ahathiyan, H. Victor Du John, D. Jackuline Moni, K. Martin Sagayam, Binay Kumar Pandey, Digvijay Pandey, Mesfin Esayas Lelisho
{"title":"Design and simulation of a highly efficient eco-friendly, non-toxic perovskite solar cell","authors":"G. S. Ahathiyan,&nbsp;H. Victor Du John,&nbsp;D. Jackuline Moni,&nbsp;K. Martin Sagayam,&nbsp;Binay Kumar Pandey,&nbsp;Digvijay Pandey,&nbsp;Mesfin Esayas Lelisho","doi":"10.1186/s11671-025-04190-1","DOIUrl":null,"url":null,"abstract":"<div><p>A highly efficient and nontoxic material methylammoniumtin(II) iodideperovskite solar cell is proposed. This proposed solar cell uses CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> as the absorber layer, TiO<sub>2</sub> as an Electron transport layer (ETL), Indium tin oxide as a buffer layer, and Copper(I) oxide as the hole transport layer (HTL). The device is simulated using the SCAPS-1D simulation tool. This study details the optimization of a set of parameters, including the defect densities and the thickness of the absorber layer. The proposed structure is highly optimized result of 31.73% of enhanced power conversion efficiency (PCE), a J<sub>SC</sub> of 24.526 mA/cm<sup>2</sup> (short-circuit current), FF of 81.40% (fill factor), and a V<sub>OC</sub> of 1.56 V (open-circuit voltage) is obtained through simulation process. Compared to previously reported works, the performance of the device has improved significantly due to better optimization. Along with this electrical characteristic temperature analyses, conductance voltage, capacitance–voltage, and bandgap analyses have also been carried out to examine the device’s efficiency and performance.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04190-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04190-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A highly efficient and nontoxic material methylammoniumtin(II) iodideperovskite solar cell is proposed. This proposed solar cell uses CH3NH3SnI3 as the absorber layer, TiO2 as an Electron transport layer (ETL), Indium tin oxide as a buffer layer, and Copper(I) oxide as the hole transport layer (HTL). The device is simulated using the SCAPS-1D simulation tool. This study details the optimization of a set of parameters, including the defect densities and the thickness of the absorber layer. The proposed structure is highly optimized result of 31.73% of enhanced power conversion efficiency (PCE), a JSC of 24.526 mA/cm2 (short-circuit current), FF of 81.40% (fill factor), and a VOC of 1.56 V (open-circuit voltage) is obtained through simulation process. Compared to previously reported works, the performance of the device has improved significantly due to better optimization. Along with this electrical characteristic temperature analyses, conductance voltage, capacitance–voltage, and bandgap analyses have also been carried out to examine the device’s efficiency and performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信