{"title":"High cyclic fatigue behavior of 3D-printed titanium alloy TA15","authors":"Volodymyr Nesterenkov, Serhiy Akhonin, Illia Klochkov, Vladyslav Matviichuk, Volodymyr Berezos, Sviatoslav Motrunich","doi":"10.1007/s40194-025-01945-3","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium alloy TA15, a pseudo α-alloy from the Ti–Al-Zr-Mo-V system, has garnered significant interest due to its high specific strength, excellent corrosion resistance, and superior heat resistance. This study investigates the high cyclic fatigue behavior of 3D-printed TA15, highlighting its application in aerospace, automotive, and biomedical industries. Traditional manufacturing of elements and components from TA15 involves billets and forging, ensuring high-quality metal but incurring high costs due to extensive and complex machining processes. Additive manufacturing, particularly by electron beam melting (EBM) technology, offers a promising alternative by reducing material waste and enabling rapid prototyping. This research evaluates the mechanical properties, microstructure, and fatigue performance of TA15 specimens produced via EBM. Initial findings indicate that 3D-printed TA15 exhibits strength and comparable fatigue resistance to conventionally manufactured counterparts, making it a viable option for critical applications. The study provides insights into optimizing the AM process for TA15 to enhance its performance and reliability.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 3","pages":"717 - 725"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-025-01945-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium alloy TA15, a pseudo α-alloy from the Ti–Al-Zr-Mo-V system, has garnered significant interest due to its high specific strength, excellent corrosion resistance, and superior heat resistance. This study investigates the high cyclic fatigue behavior of 3D-printed TA15, highlighting its application in aerospace, automotive, and biomedical industries. Traditional manufacturing of elements and components from TA15 involves billets and forging, ensuring high-quality metal but incurring high costs due to extensive and complex machining processes. Additive manufacturing, particularly by electron beam melting (EBM) technology, offers a promising alternative by reducing material waste and enabling rapid prototyping. This research evaluates the mechanical properties, microstructure, and fatigue performance of TA15 specimens produced via EBM. Initial findings indicate that 3D-printed TA15 exhibits strength and comparable fatigue resistance to conventionally manufactured counterparts, making it a viable option for critical applications. The study provides insights into optimizing the AM process for TA15 to enhance its performance and reliability.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.