Construction of a self-assembled duplexed aptasensor for the simultaneous detection of haemoglobin and glycated haemoglobin†

IF 3.5 Q2 CHEMISTRY, ANALYTICAL
Xue-Qing Feng, Yi-Ning Su, Qing Li, Zhong-Gan Jin, Ming Wang, Xi-Le Hu, Lei Zou, Yi Ju, Xiao-Peng He and Bang-Ce Ye
{"title":"Construction of a self-assembled duplexed aptasensor for the simultaneous detection of haemoglobin and glycated haemoglobin†","authors":"Xue-Qing Feng, Yi-Ning Su, Qing Li, Zhong-Gan Jin, Ming Wang, Xi-Le Hu, Lei Zou, Yi Ju, Xiao-Peng He and Bang-Ce Ye","doi":"10.1039/D4SD00303A","DOIUrl":null,"url":null,"abstract":"<p >With the prevalence of diabetes and its secondary complications, the effective monitoring of diabetic biomarkers is necessary. While portable analytical devices for blood glucose have been sophisticatedly developed, those for haemoglobin (Hb) and, especially haemoglobin A1c (HbA<small><sub>1c</sub></small>), a glycated form of Hb, remain elusive. Here, we developed an aptamer-based duplexed electrochemical sensor for the simultaneous detection of Hb and HbA<small><sub>1c</sub></small>. Ferrocene (Fc) and a thiol group were introduced to the 5′ and 3′-end of aptamers that bind Hb and HbA<small><sub>1c</sub></small>, respectively. While the thiol group facilitates the formation of a self-assembled monolayer of the aptamers onto a customized, duplexed screen-printed gold electrode, the presence of Fc provides the electrodes an internal electrochemical signal. Upon analyte binding, the secondary conformation of the aptamers is changed, thus leading to a quenched current signal because of an increased distance between Fc and the electrode surface. Our duplexed electrochemical sensor showed a good linearity for both analytes over a wide concentration range, and has proved effective in simultaneously quantifying Hb and HbA<small><sub>1c</sub></small> in calibration samples.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 2","pages":" 166-170"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00303a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00303a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the prevalence of diabetes and its secondary complications, the effective monitoring of diabetic biomarkers is necessary. While portable analytical devices for blood glucose have been sophisticatedly developed, those for haemoglobin (Hb) and, especially haemoglobin A1c (HbA1c), a glycated form of Hb, remain elusive. Here, we developed an aptamer-based duplexed electrochemical sensor for the simultaneous detection of Hb and HbA1c. Ferrocene (Fc) and a thiol group were introduced to the 5′ and 3′-end of aptamers that bind Hb and HbA1c, respectively. While the thiol group facilitates the formation of a self-assembled monolayer of the aptamers onto a customized, duplexed screen-printed gold electrode, the presence of Fc provides the electrodes an internal electrochemical signal. Upon analyte binding, the secondary conformation of the aptamers is changed, thus leading to a quenched current signal because of an increased distance between Fc and the electrode surface. Our duplexed electrochemical sensor showed a good linearity for both analytes over a wide concentration range, and has proved effective in simultaneously quantifying Hb and HbA1c in calibration samples.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信