Prediction of Delay-Free Scene for Quadruped Robot Teleoperation: Integrating Delayed Data With User Commands

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Seunghyeon Ha;Seongyong Kim;Soo-Chul Lim
{"title":"Prediction of Delay-Free Scene for Quadruped Robot Teleoperation: Integrating Delayed Data With User Commands","authors":"Seunghyeon Ha;Seongyong Kim;Soo-Chul Lim","doi":"10.1109/LRA.2025.3536222","DOIUrl":null,"url":null,"abstract":"Teleoperation systems are utilized in various controllable systems, including vehicles, manipulators, and quadruped robots. However, during teleoperation, communication delays can cause users to receive delayed feedback, which reduces controllability and increases the risk faced by the remote robot. To address this issue, we propose a delay-free video generation model based on user commands that allows users to receive real-time feedback despite communication delays. Our model predicts delay-free video by integrating delayed data (video, point cloud, and robot status) from the robot with the user's real-time commands. The LiDAR point cloud data, which is part of the delayed data, is used to predict the contents of areas outside the camera frame during robot rotation. We constructed our proposed model by modifying the transformer-based video prediction model VPTR-NAR to effectively integrate these data. For our experiments, we acquired a navigation dataset from a quadruped robot, and this dataset was used to train and test our proposed model. We evaluated the model's performance by comparing it with existing video prediction models and conducting an ablation study to verify the effectiveness of its utilization of command and point cloud data.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 3","pages":"2846-2853"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857415/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Teleoperation systems are utilized in various controllable systems, including vehicles, manipulators, and quadruped robots. However, during teleoperation, communication delays can cause users to receive delayed feedback, which reduces controllability and increases the risk faced by the remote robot. To address this issue, we propose a delay-free video generation model based on user commands that allows users to receive real-time feedback despite communication delays. Our model predicts delay-free video by integrating delayed data (video, point cloud, and robot status) from the robot with the user's real-time commands. The LiDAR point cloud data, which is part of the delayed data, is used to predict the contents of areas outside the camera frame during robot rotation. We constructed our proposed model by modifying the transformer-based video prediction model VPTR-NAR to effectively integrate these data. For our experiments, we acquired a navigation dataset from a quadruped robot, and this dataset was used to train and test our proposed model. We evaluated the model's performance by comparing it with existing video prediction models and conducting an ablation study to verify the effectiveness of its utilization of command and point cloud data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信