High-Accuracy Frequency Standard Comparison Technology Combining Adaptive Frequency and Lissajous Figure

Baoqiang Du;Yangfan Su;Zerui Yang
{"title":"High-Accuracy Frequency Standard Comparison Technology Combining Adaptive Frequency and Lissajous Figure","authors":"Baoqiang Du;Yangfan Su;Zerui Yang","doi":"10.1109/OJIM.2025.3527536","DOIUrl":null,"url":null,"abstract":"To meet the requirements of high-precision measurement of time-frequency multiparameters, a high-accuracy frequency standard comparison technology combining adaptive frequency and Lissajous figure is proposed. This technology uses only one reference frequency source to realize the frequency standard comparison and frequency measurement between any frequency signals without frequency normalization. First, a new frequency standard comparison signal is obtained by using an adaptive frequency standard generation module to roughly measure the measured frequency. Second, the turning period is measured by observing the Lissajous figure. Third, via the turning period and the function relation of frequency deviation, the relative frequency difference between the measured and frequency standard signals can be obtained. Finally, the phase relation between the measured and frequency standard signals is determined by oscilloscope, and then the high-accuracy measurement of the measured frequency can be realized. The testing results indicate that the accuracy of the frequency measurement in the radiofrequency range can achieve the <inline-formula> <tex-math>$10^{-12}$ </tex-math></inline-formula> order of magnitude. Compared with the traditional frequency standard comparison technology, this technology has many characteristics, such as simple operation, low cost, low noise, and high measurement accuracy.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10883668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10883668/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the requirements of high-precision measurement of time-frequency multiparameters, a high-accuracy frequency standard comparison technology combining adaptive frequency and Lissajous figure is proposed. This technology uses only one reference frequency source to realize the frequency standard comparison and frequency measurement between any frequency signals without frequency normalization. First, a new frequency standard comparison signal is obtained by using an adaptive frequency standard generation module to roughly measure the measured frequency. Second, the turning period is measured by observing the Lissajous figure. Third, via the turning period and the function relation of frequency deviation, the relative frequency difference between the measured and frequency standard signals can be obtained. Finally, the phase relation between the measured and frequency standard signals is determined by oscilloscope, and then the high-accuracy measurement of the measured frequency can be realized. The testing results indicate that the accuracy of the frequency measurement in the radiofrequency range can achieve the $10^{-12}$ order of magnitude. Compared with the traditional frequency standard comparison technology, this technology has many characteristics, such as simple operation, low cost, low noise, and high measurement accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信