Photochemical loss and source apportionment of atmospheric volatile organic compounds in a typical basin city of the Chengdu-Chongqing Economic Circle

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Xingnuo Ren , Fengwen Wang , Xiaochen Wang , Mulan Chen , Weikai Fang , Xu Deng , Peili Lu , Zhenliang Li , Hai Guo , Neil L. Rose
{"title":"Photochemical loss and source apportionment of atmospheric volatile organic compounds in a typical basin city of the Chengdu-Chongqing Economic Circle","authors":"Xingnuo Ren ,&nbsp;Fengwen Wang ,&nbsp;Xiaochen Wang ,&nbsp;Mulan Chen ,&nbsp;Weikai Fang ,&nbsp;Xu Deng ,&nbsp;Peili Lu ,&nbsp;Zhenliang Li ,&nbsp;Hai Guo ,&nbsp;Neil L. Rose","doi":"10.1016/j.atmosres.2025.107979","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) are key precursors in ozone formation, and their photochemical losses during atmospheric transport critically influence pollution characterization and source apportionment. The Chengdu-Chongqing region experiences heightened ozone pollution during the summer months. In light of this, we conducted an in-depth analysis of the atmospheric concentrations and photochemical losses of 56 VOC species in Rongchang of Chongqing, a representative city within the Chengdu-Chongqing Economic Circle from June to September 2023. We employed a combination of Positive matrix factorization and backward trajectory analysis to comprehensively resolve emission sources. The results indicate that not considering photochemical losses could lead to substantial underestimations in VOC concentrations (TVOC, 20.87 %), ozone formation potential (OFP, 27.40 %) and hydroxyl radical loss (L<sub>OH</sub>, 56.20 %). Positive matrix factorization (PMF) analysis, based on the initial and observed concentrations, revealed that the motor vehicle emissions are overestimated by 7.95 % if neglecting the photochemical losses. Conversely, the industrial emissions, natural emissions, fossil fuel combustion, and solvent use sources are underestimated by 70.49 %, 44.24 %, 13.02 %, and 25.07 %, respectively. Backward trajectory analysis identified that industrial emissions predominantly originated from southeastern Sichuan and southwestern Chongqing, while solvent use emissions were concentrated in the main urban area of Chongqing. This study quantifies the impact of photochemical reactions on the characterization of atmospheric VOCs and source apportionment in Chongqing. The results provide critical insights to inform more effective control strategies for VOC pollution in the Chengdu-Chongqing metropolitan area.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"317 ","pages":"Article 107979"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525000717","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile organic compounds (VOCs) are key precursors in ozone formation, and their photochemical losses during atmospheric transport critically influence pollution characterization and source apportionment. The Chengdu-Chongqing region experiences heightened ozone pollution during the summer months. In light of this, we conducted an in-depth analysis of the atmospheric concentrations and photochemical losses of 56 VOC species in Rongchang of Chongqing, a representative city within the Chengdu-Chongqing Economic Circle from June to September 2023. We employed a combination of Positive matrix factorization and backward trajectory analysis to comprehensively resolve emission sources. The results indicate that not considering photochemical losses could lead to substantial underestimations in VOC concentrations (TVOC, 20.87 %), ozone formation potential (OFP, 27.40 %) and hydroxyl radical loss (LOH, 56.20 %). Positive matrix factorization (PMF) analysis, based on the initial and observed concentrations, revealed that the motor vehicle emissions are overestimated by 7.95 % if neglecting the photochemical losses. Conversely, the industrial emissions, natural emissions, fossil fuel combustion, and solvent use sources are underestimated by 70.49 %, 44.24 %, 13.02 %, and 25.07 %, respectively. Backward trajectory analysis identified that industrial emissions predominantly originated from southeastern Sichuan and southwestern Chongqing, while solvent use emissions were concentrated in the main urban area of Chongqing. This study quantifies the impact of photochemical reactions on the characterization of atmospheric VOCs and source apportionment in Chongqing. The results provide critical insights to inform more effective control strategies for VOC pollution in the Chengdu-Chongqing metropolitan area.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信