DHODH inhibitors: What will it take to get them into the clinic as antivirals?

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Anna Luganini , Donatella Boschi , Marco L. Lolli , Giorgio Gribaudo
{"title":"DHODH inhibitors: What will it take to get them into the clinic as antivirals?","authors":"Anna Luganini ,&nbsp;Donatella Boschi ,&nbsp;Marco L. Lolli ,&nbsp;Giorgio Gribaudo","doi":"10.1016/j.antiviral.2025.106099","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of new human viruses with epidemic or pandemic potential has reaffirmed the urgency to develop effective broad-spectrum antivirals (BSAs) as part of a strategic framework for pandemic prevention and preparedness. To this end, the host nucleotide metabolic pathway has been subject to intense investigation in the search for host-targeting agents (HTAs) with potential BSA activity. In particular, human dihydroorotate dehydrogenase (<em>h</em>DHODH), a rate-limiting enzyme in the <em>de novo</em> pyrimidine biosynthetic pathway, has been identified as a preferential target of new HTAs. Viral replication in fact relies on cellular pyrimidine replenishment, making <em>h</em>DHODH an ideal HTA target. The depletion of the host pyrimidine pool that ensues the pharmacological inhibition of <em>h</em>DHODH activity elicits effective BSA activity through three distinct mechanisms: it blocks viral DNA and RNA synthesis; it activates effector mechanisms of the host innate antiviral response; and it mitigates the virus-induced inflammatory response. However, despite the spectacular results obtained <em>in vitro</em>, the <em>h</em>DHODH inhibitors examined as mono-drug therapies in animal models of human viral infections and in clinical trials have produced disappointing levels of overall antiviral efficacy. To overcome this inherent limitation, pharmacological strategies based on multi-drug combination treatments should be considered to enable efficacy of <em>h</em>DHODH-targeted antiviral therapies.</div><div>Here, we review the state-of-the-art of antiviral applications of <em>h</em>DHODH inhibitors, discuss the challenges that have emerged from their testing in animal models and human clinical trials and consider how they might be addressed to advance the development of <em>h</em>DHODH inhibitors as BSA for the treatment of viral diseases.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"236 ","pages":"Article 106099"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354225000257","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of new human viruses with epidemic or pandemic potential has reaffirmed the urgency to develop effective broad-spectrum antivirals (BSAs) as part of a strategic framework for pandemic prevention and preparedness. To this end, the host nucleotide metabolic pathway has been subject to intense investigation in the search for host-targeting agents (HTAs) with potential BSA activity. In particular, human dihydroorotate dehydrogenase (hDHODH), a rate-limiting enzyme in the de novo pyrimidine biosynthetic pathway, has been identified as a preferential target of new HTAs. Viral replication in fact relies on cellular pyrimidine replenishment, making hDHODH an ideal HTA target. The depletion of the host pyrimidine pool that ensues the pharmacological inhibition of hDHODH activity elicits effective BSA activity through three distinct mechanisms: it blocks viral DNA and RNA synthesis; it activates effector mechanisms of the host innate antiviral response; and it mitigates the virus-induced inflammatory response. However, despite the spectacular results obtained in vitro, the hDHODH inhibitors examined as mono-drug therapies in animal models of human viral infections and in clinical trials have produced disappointing levels of overall antiviral efficacy. To overcome this inherent limitation, pharmacological strategies based on multi-drug combination treatments should be considered to enable efficacy of hDHODH-targeted antiviral therapies.
Here, we review the state-of-the-art of antiviral applications of hDHODH inhibitors, discuss the challenges that have emerged from their testing in animal models and human clinical trials and consider how they might be addressed to advance the development of hDHODH inhibitors as BSA for the treatment of viral diseases.
DHODH抑制剂:怎样才能使它们作为抗病毒药物进入临床?
具有流行或大流行潜力的新人类病毒的出现再次表明,迫切需要开发有效的广谱抗病毒药物,作为大流行预防和防备战略框架的一部分。为此,在寻找具有潜在BSA活性的宿主靶向剂(hta)的过程中,宿主核苷酸代谢途径一直受到密切的研究。特别是,人二氢羟酸脱氢酶(hDHODH)是一种新的嘧啶生物合成途径中的限速酶,已被确定为新的hta的首选靶标。病毒复制实际上依赖于细胞嘧啶的补充,使hDHODH成为理想的HTA靶标。宿主嘧啶池的耗竭导致hDHODH活性的药理学抑制,通过三种不同的机制引发有效的BSA活性:它阻断病毒DNA和RNA的合成;它激活宿主先天抗病毒反应的效应机制;它还能减轻病毒引起的炎症反应。然而,尽管在体外获得了惊人的结果,但在人类病毒感染的动物模型和临床试验中,作为单药治疗的hDHODH抑制剂产生了令人失望的整体抗病毒功效。为了克服这种固有的局限性,应该考虑基于多药联合治疗的药理学策略,以使hdhodh靶向抗病毒治疗有效。在这里,我们回顾了hDHODH抑制剂抗病毒应用的最新进展,讨论了在动物模型和人体临床试验中出现的挑战,并考虑了如何解决这些挑战,以推进hDHODH抑制剂作为治疗病毒性疾病的BSA的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信