Enhanced transdermal delivery of pioglitazone hydrochloride via conductive hydrogel microneedles combined with iontophoresis

IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Jianling Hu , Yue An , Weiqing Wang , Jing Yang , Wenxin Niu , Xiumei Jiang , Kun Li , Changzhao Jiang , Jincui Ye
{"title":"Enhanced transdermal delivery of pioglitazone hydrochloride via conductive hydrogel microneedles combined with iontophoresis","authors":"Jianling Hu ,&nbsp;Yue An ,&nbsp;Weiqing Wang ,&nbsp;Jing Yang ,&nbsp;Wenxin Niu ,&nbsp;Xiumei Jiang ,&nbsp;Kun Li ,&nbsp;Changzhao Jiang ,&nbsp;Jincui Ye","doi":"10.1016/j.ijpx.2025.100317","DOIUrl":null,"url":null,"abstract":"<div><div>The conventional oral administration of pioglitazone for Type II diabetes management is frequently compromised by hepatic first-pass metabolism and associated systemic adverse effects, necessitating the development of enhanced transdermal delivery approaches. This study developed a transdermal drug delivery system combining conductive hydrogel microneedles and iontophoresis to improve the transdermal delivery of pioglitazone hydrochloride (PIO) and its therapeutic efficacy in the treatment of type II diabetes. The microneedles, fabricated using poly(methyl vinyl ether-<em>alt</em>-maleic anhydride) as the main matrix material, exhibited excellent conductivity, mechanical strength, and high drug loading capacity. In vitro permeation experiments demonstrated that, when combined with iontophoresis at a current intensity of 0.5 mA, the cumulative permeation of PIO reached 238.1 ± 27.14 μg/cm<sup>2</sup> within 48 h, significantly higher than that of the microneedle group alone. In a type II diabetic rat model, the microneedle-iontophoresis system displayed a significantly better hypoglycemic effect than the oral administration group, with a blood glucose reduction of 6.3 mmol/L on day 8, significantly higher than the 5.1 mmol/L reduction in the positive control group. Pharmacokinetic analysis indicated that the T<sub>max</sub>, T<sub>1/2</sub>, and mean residence time of the system were longer than those of oral administration, indicating sustained-release characteristics. Skin irritation tests revealed that the system caused only mild, transient skin irritation, with complete skin recovery within 24 h. In conclusion, conductive hydrogel microneedles combined with iontophoresis can effectively enhance PIO transdermal delivery, bioavailability, and therapeutic efficacy while also exhibiting good safety and potential clinical application value.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"9 ","pages":"Article 100317"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional oral administration of pioglitazone for Type II diabetes management is frequently compromised by hepatic first-pass metabolism and associated systemic adverse effects, necessitating the development of enhanced transdermal delivery approaches. This study developed a transdermal drug delivery system combining conductive hydrogel microneedles and iontophoresis to improve the transdermal delivery of pioglitazone hydrochloride (PIO) and its therapeutic efficacy in the treatment of type II diabetes. The microneedles, fabricated using poly(methyl vinyl ether-alt-maleic anhydride) as the main matrix material, exhibited excellent conductivity, mechanical strength, and high drug loading capacity. In vitro permeation experiments demonstrated that, when combined with iontophoresis at a current intensity of 0.5 mA, the cumulative permeation of PIO reached 238.1 ± 27.14 μg/cm2 within 48 h, significantly higher than that of the microneedle group alone. In a type II diabetic rat model, the microneedle-iontophoresis system displayed a significantly better hypoglycemic effect than the oral administration group, with a blood glucose reduction of 6.3 mmol/L on day 8, significantly higher than the 5.1 mmol/L reduction in the positive control group. Pharmacokinetic analysis indicated that the Tmax, T1/2, and mean residence time of the system were longer than those of oral administration, indicating sustained-release characteristics. Skin irritation tests revealed that the system caused only mild, transient skin irritation, with complete skin recovery within 24 h. In conclusion, conductive hydrogel microneedles combined with iontophoresis can effectively enhance PIO transdermal delivery, bioavailability, and therapeutic efficacy while also exhibiting good safety and potential clinical application value.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Pharmaceutics: X
International Journal of Pharmaceutics: X Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.60
自引率
0.00%
发文量
32
审稿时长
24 days
期刊介绍: International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible. International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ. The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信