Hydrothermal synthesis of iron oxide grown on nickel foam for supercapacitors

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Keshab Pandey , Yong Gyu Lee , Hae Kyung Jeong
{"title":"Hydrothermal synthesis of iron oxide grown on nickel foam for supercapacitors","authors":"Keshab Pandey ,&nbsp;Yong Gyu Lee ,&nbsp;Hae Kyung Jeong","doi":"10.1016/j.cap.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>Metal oxides with nanostructures and nickel foam (NF) are evaluated as highly promising electrode materials for supercapacitors, though their performance is required for practical applications. In this study, we synthesized iron oxide nanoparticles from iron nitrate nonahydrate onto NF via a hydrothermal process at a low temperature of 120 °C for a short duration of 6 h. The performance was significantly influenced by optimizing the mass ratio of iron nitrate nonahydrate (0.25, 0.5, and 1 mmol) in terms of charge storage capability, surface area, impedance behavior, and energy density. The optimal loading of 0.5 mmol of iron nitrate nonahydrate on NF-based supercapacitors achieved a specific capacitance of 191.4 F g⁻<sup>1</sup> with an energy density of 17.1 Wh Kg⁻<sup>1</sup> at 1 A g⁻<sup>1</sup>. The relatively simple synthesis process and excellent performance of the iron oxide on NF composite highlights its potential as an electrode material for next-generation symmetric supercapacitors.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 56-64"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000124","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxides with nanostructures and nickel foam (NF) are evaluated as highly promising electrode materials for supercapacitors, though their performance is required for practical applications. In this study, we synthesized iron oxide nanoparticles from iron nitrate nonahydrate onto NF via a hydrothermal process at a low temperature of 120 °C for a short duration of 6 h. The performance was significantly influenced by optimizing the mass ratio of iron nitrate nonahydrate (0.25, 0.5, and 1 mmol) in terms of charge storage capability, surface area, impedance behavior, and energy density. The optimal loading of 0.5 mmol of iron nitrate nonahydrate on NF-based supercapacitors achieved a specific capacitance of 191.4 F g⁻1 with an energy density of 17.1 Wh Kg⁻1 at 1 A g⁻1. The relatively simple synthesis process and excellent performance of the iron oxide on NF composite highlights its potential as an electrode material for next-generation symmetric supercapacitors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信