Zheheng Jiang , Hossein Rahmani , Sue Black , Bryan Williams
{"title":"3D Points Splatting for real-time dynamic Hand Reconstruction","authors":"Zheheng Jiang , Hossein Rahmani , Sue Black , Bryan Williams","doi":"10.1016/j.patcog.2025.111426","DOIUrl":null,"url":null,"abstract":"<div><div>We present 3D Points Splatting Hand Reconstruction (3D-PSHR), a real-time and photo-realistic hand reconstruction approach. We propose a self-adaptive canonical points upsampling strategy to achieve high-resolution hand geometry representation. This is followed by a self-adaptive deformation that deforms the hand from the canonical space to the target pose, adapting to the dynamic changing of canonical points which, in contrast to the common practice of subdividing the MANO model, offers greater flexibility and results in improved geometry fitting. To model texture, we disentangle the appearance color into the intrinsic albedo and pose-aware shading, which are learned through a Context-Attention module. Moreover, our approach allows the geometric and the appearance models to be trained simultaneously in an end-to-end manner. We demonstrate that our method is capable of producing animatable, photorealistic and relightable hand reconstructions using multiple datasets, including monocular videos captured with handheld smartphones and large-scale multi-view videos featuring various hand poses. We also demonstrate that our approach achieves real-time rendering speeds while simultaneously maintaining superior performance compared to existing state-of-the-art methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"162 ","pages":"Article 111426"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003132032500086X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We present 3D Points Splatting Hand Reconstruction (3D-PSHR), a real-time and photo-realistic hand reconstruction approach. We propose a self-adaptive canonical points upsampling strategy to achieve high-resolution hand geometry representation. This is followed by a self-adaptive deformation that deforms the hand from the canonical space to the target pose, adapting to the dynamic changing of canonical points which, in contrast to the common practice of subdividing the MANO model, offers greater flexibility and results in improved geometry fitting. To model texture, we disentangle the appearance color into the intrinsic albedo and pose-aware shading, which are learned through a Context-Attention module. Moreover, our approach allows the geometric and the appearance models to be trained simultaneously in an end-to-end manner. We demonstrate that our method is capable of producing animatable, photorealistic and relightable hand reconstructions using multiple datasets, including monocular videos captured with handheld smartphones and large-scale multi-view videos featuring various hand poses. We also demonstrate that our approach achieves real-time rendering speeds while simultaneously maintaining superior performance compared to existing state-of-the-art methods.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.