Integrating direct observation and environmental DNA data to enhance species distribution models in riverine environments

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY
Luca Carraro
{"title":"Integrating direct observation and environmental DNA data to enhance species distribution models in riverine environments","authors":"Luca Carraro","doi":"10.1016/j.ecoinf.2025.103056","DOIUrl":null,"url":null,"abstract":"<div><div>The recent advances in both theoretical and modeling approaches (species distribution models) and molecular techniques (environmental DNA) offer new opportunities to advance the assessment of biodiversity. This is particularly the case for riverine environments, whose biodiversity is disproportionately under peril, but also whose dendritic connectivity allows a spatial interpretation of eDNA samples, which reflect a biodiversity signal averaged over a certain upstream area. Conversely, traditional, direct observation surveys provide localized information on taxon density. Here, I propose a framework to leverage both data types to improve estimates of a taxon’s spatial distribution. Specifically, I expand the eDITH model (which allows estimating the spatial distribution of taxa based on spatially replicated stream eDNA data) to include direct observations, and upgrade the <span>eDITH</span> R-package to allow a broad implementation of such method. Moreover, I propose optimized sampling strategies for both eDNA and direct sampling, with algorithms (included in the upgraded <span>eDITH</span> package) that mathematically translate rule-of-thumb criteria to maximize the spatial coverage of sites’ arrangement in a riverscape based on the peculiar features of each data type. Finally, I test such framework by means of an in-silico experiment, whereby I show that optimized sampling strategies outperform random-based strategies in the ability to reconstruct a taxon’s spatial distribution. When eDNA and direct sampling sites are spatially arranged in an optimized fashion, the highest prediction skill for a fixed total number of sampling sites deployed is reached when both data types are included in the model fitting. The optimal trade-off between eDNA and direct sampling observations depends on both characteristics of the investigated taxon (e.g., the spatial heterogeneity in its distribution) and the level of uncertainty in the observed data. These results will contribute to designing efficient strategies for integrated biomonitoring in river networks.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103056"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000652","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent advances in both theoretical and modeling approaches (species distribution models) and molecular techniques (environmental DNA) offer new opportunities to advance the assessment of biodiversity. This is particularly the case for riverine environments, whose biodiversity is disproportionately under peril, but also whose dendritic connectivity allows a spatial interpretation of eDNA samples, which reflect a biodiversity signal averaged over a certain upstream area. Conversely, traditional, direct observation surveys provide localized information on taxon density. Here, I propose a framework to leverage both data types to improve estimates of a taxon’s spatial distribution. Specifically, I expand the eDITH model (which allows estimating the spatial distribution of taxa based on spatially replicated stream eDNA data) to include direct observations, and upgrade the eDITH R-package to allow a broad implementation of such method. Moreover, I propose optimized sampling strategies for both eDNA and direct sampling, with algorithms (included in the upgraded eDITH package) that mathematically translate rule-of-thumb criteria to maximize the spatial coverage of sites’ arrangement in a riverscape based on the peculiar features of each data type. Finally, I test such framework by means of an in-silico experiment, whereby I show that optimized sampling strategies outperform random-based strategies in the ability to reconstruct a taxon’s spatial distribution. When eDNA and direct sampling sites are spatially arranged in an optimized fashion, the highest prediction skill for a fixed total number of sampling sites deployed is reached when both data types are included in the model fitting. The optimal trade-off between eDNA and direct sampling observations depends on both characteristics of the investigated taxon (e.g., the spatial heterogeneity in its distribution) and the level of uncertainty in the observed data. These results will contribute to designing efficient strategies for integrated biomonitoring in river networks.
整合直接观测和环境DNA数据,增强河流环境物种分布模型
理论和建模方法(物种分布模型)和分子技术(环境DNA)的最新进展为推进生物多样性评估提供了新的机会。河流环境尤其如此,其生物多样性不成比例地受到威胁,但其树突连通性也允许对eDNA样本进行空间解释,这反映了在特定上游区域平均的生物多样性信号。相反,传统的直接观察调查提供了分类群密度的局部信息。在这里,我提出了一个框架来利用这两种数据类型来改进对分类单元空间分布的估计。具体来说,我扩展了eDITH模型(它允许基于空间复制的流eDNA数据估计分类群的空间分布)以包括直接观测,并升级了eDITH R-package以允许广泛实施这种方法。此外,我提出了eDNA和直接采样的优化采样策略,使用算法(包括在升级的eDITH包中),这些算法可以数学地转换经验法则标准,以最大限度地提高基于每种数据类型的独特特征的河景中站点安排的空间覆盖率。最后,我通过一个计算机实验来测试这个框架,在重构分类单元空间分布的能力方面,我证明了优化的采样策略优于基于随机的策略。当eDNA和直接采样点以优化的方式在空间上排列时,当两种数据类型都包含在模型拟合中时,对于固定总数的采样点部署达到最高预测技能。eDNA与直接取样观测之间的最佳权衡取决于所调查分类单元的特征(例如,其分布的空间异质性)和观测数据的不确定性水平。这些结果将有助于设计有效的河网综合生物监测策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信