Sequential citation counts prediction enhanced by dynamic contents

IF 3.4 2区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guoxiu He , Sichen Gu , Zhikai Xue , Yufeng Duan , Xiaomin Zhu
{"title":"Sequential citation counts prediction enhanced by dynamic contents","authors":"Guoxiu He ,&nbsp;Sichen Gu ,&nbsp;Zhikai Xue ,&nbsp;Yufeng Duan ,&nbsp;Xiaomin Zhu","doi":"10.1016/j.joi.2025.101645","DOIUrl":null,"url":null,"abstract":"<div><div>The assessment of the impact of scholarly publications has garnered significant attention among researchers, particularly in predicting the future sequence of citation counts. However, current studies predominantly regard academic papers as static entities, failing to acknowledge the dynamic nature of their fixed content, which can undergo shifts in focus over time. To this end, we implement dynamic representations of the content to mirror chronological changes within the given paper, facilitating the sequential prediction of citation counts. Specifically, we propose a novel deep neural network called <strong>D</strong>ynam<strong>I</strong>c <strong>C</strong>ontent-aware <strong>T</strong>r<strong>A</strong>nsformer (DICTA). The proposed model incorporates a dynamic content module that leverages the power of a sequential module to effectively capture the evolving focus information within each paper. To account for dependencies between the historical and future citation counts, our model utilizes a transformer-based framework as the backbone. With the encoder-decoder structure, it can effectively handle previous citation accumulations and then predict future citation potentials. Extensive experiments conducted on two scientific datasets demonstrate that DICTA achieves impressive performance and outperforms all baseline approaches. Further analyses underscore the significance of the dynamic content module. The code is available: <span><span>https://github.com/ECNU-Text-Computing/DICTA</span><svg><path></path></svg></span></div></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"19 2","pages":"Article 101645"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157725000094","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of the impact of scholarly publications has garnered significant attention among researchers, particularly in predicting the future sequence of citation counts. However, current studies predominantly regard academic papers as static entities, failing to acknowledge the dynamic nature of their fixed content, which can undergo shifts in focus over time. To this end, we implement dynamic representations of the content to mirror chronological changes within the given paper, facilitating the sequential prediction of citation counts. Specifically, we propose a novel deep neural network called DynamIc Content-aware TrAnsformer (DICTA). The proposed model incorporates a dynamic content module that leverages the power of a sequential module to effectively capture the evolving focus information within each paper. To account for dependencies between the historical and future citation counts, our model utilizes a transformer-based framework as the backbone. With the encoder-decoder structure, it can effectively handle previous citation accumulations and then predict future citation potentials. Extensive experiments conducted on two scientific datasets demonstrate that DICTA achieves impressive performance and outperforms all baseline approaches. Further analyses underscore the significance of the dynamic content module. The code is available: https://github.com/ECNU-Text-Computing/DICTA
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Informetrics
Journal of Informetrics Social Sciences-Library and Information Sciences
CiteScore
6.40
自引率
16.20%
发文量
95
期刊介绍: Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信