{"title":"Leveraging temporal variability in global sensitivity analysis of the Daisy soil-plant-atmosphere model","authors":"Laura Delhez , Benjamin Dumont , Bernard Longdoz","doi":"10.1016/j.eja.2025.127533","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic crop models, such as the Daisy soil-plant-atmosphere model, simulate many processes and encompass a large number of parameters. Global sensitivity analysis (GSA) aims to identify the most influential parameters and understand model structure and behaviour. However, little attention has been paid to the temporal dynamics of parameter sensitivity in crop models, even though it can provide greater insight into model structure. This study performs a comprehensive GSA on the Daisy model, including the soil-vegetation-atmosphere transfer (SVAT) module, focusing on crop yield as well as CO<sub>2</sub>, N<sub>2</sub>O and energy fluxes. The Sobol’ method was applied to two types of outputs: (i) outputs aggregated into a scalar with an objective function (RMSE or cumulative) and (ii) vector outputs analysed at each time step. The main objectives of this paper were to compare the temporal and aggregated applications of GSA and to identify influential parameters of Daisy under different environmental conditions. Both aggregated and temporal methods identified the same main parameters. Nevertheless, temporal analysis provided deeper insight into model behaviour and calibration guidelines, revealing dynamic changes in parameter sensitivity at weekly and hourly resolutions and identifying critical periods for calibration. Aggregated analysis was less time-consuming and focused on specific aspects due to the definition of the objective function. Finally, we discussed the risks and solutions for Daisy over-parameterisation as well as methods for parameter estimation based on information provided by the GSA.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"165 ","pages":"Article 127533"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125000292","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic crop models, such as the Daisy soil-plant-atmosphere model, simulate many processes and encompass a large number of parameters. Global sensitivity analysis (GSA) aims to identify the most influential parameters and understand model structure and behaviour. However, little attention has been paid to the temporal dynamics of parameter sensitivity in crop models, even though it can provide greater insight into model structure. This study performs a comprehensive GSA on the Daisy model, including the soil-vegetation-atmosphere transfer (SVAT) module, focusing on crop yield as well as CO2, N2O and energy fluxes. The Sobol’ method was applied to two types of outputs: (i) outputs aggregated into a scalar with an objective function (RMSE or cumulative) and (ii) vector outputs analysed at each time step. The main objectives of this paper were to compare the temporal and aggregated applications of GSA and to identify influential parameters of Daisy under different environmental conditions. Both aggregated and temporal methods identified the same main parameters. Nevertheless, temporal analysis provided deeper insight into model behaviour and calibration guidelines, revealing dynamic changes in parameter sensitivity at weekly and hourly resolutions and identifying critical periods for calibration. Aggregated analysis was less time-consuming and focused on specific aspects due to the definition of the objective function. Finally, we discussed the risks and solutions for Daisy over-parameterisation as well as methods for parameter estimation based on information provided by the GSA.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.