The energy level transition for nonlinear Kirchhoff equation under a perturbation of potential

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Baihong Li, Yuanhong Wei
{"title":"The energy level transition for nonlinear Kirchhoff equation under a perturbation of potential","authors":"Baihong Li,&nbsp;Yuanhong Wei","doi":"10.1016/j.aop.2025.169949","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the energy level transition behavior for the nonlinear Kirchhoff equation with a potential and a pure power nonlinearity. The potential function is assumed to be a perturbation of a positive constant. Under a negative perturbation, the persistence for ground state solution is demonstrated. It is also proved that a positive perturbation excludes the ground state solution while ensuring the existence of the bound state solution with high energy. Our approach is based on the variational method, aided by global compactness and linking theorem.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"475 ","pages":"Article 169949"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625000302","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the energy level transition behavior for the nonlinear Kirchhoff equation with a potential and a pure power nonlinearity. The potential function is assumed to be a perturbation of a positive constant. Under a negative perturbation, the persistence for ground state solution is demonstrated. It is also proved that a positive perturbation excludes the ground state solution while ensuring the existence of the bound state solution with high energy. Our approach is based on the variational method, aided by global compactness and linking theorem.
位势扰动下非线性Kirchhoff方程的能级跃迁
本文研究了具有势和纯幂非线性的非线性Kirchhoff方程的能级跃迁行为。假定势函数是一个正常数的扰动。在负扰动下,证明了基态解的持久性。证明了正摄动在保证高能束缚态解存在的同时排除了基态解。我们的方法是基于变分方法,借助于全局紧性和连接定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信