The influence of Al content and heat treatment on the microstructure and properties of austenite-ferrite duplex Fe-Mn-Al-C lightweight steels

Rui Bai, Yunfei Du, Yaqin Zhang, Xiuli He
{"title":"The influence of Al content and heat treatment on the microstructure and properties of austenite-ferrite duplex Fe-Mn-Al-C lightweight steels","authors":"Rui Bai,&nbsp;Yunfei Du,&nbsp;Yaqin Zhang,&nbsp;Xiuli He","doi":"10.1016/j.jalmes.2025.100162","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the influence of Al content (9 wt% and 12 wt%) on the microstructure evolution, mechanical properties and deformation behavior of austenite-based Fe-Mn-Al-C lightweight steels were investigated. The Steel with 9 % Al content displayed a dual-phase structure with austenite and less than 5 % ferrite, while the Steel with 12 % Al content contained approximately 23 % ferrite and nanoscale κ-carbide precipitates, influenced by the Al content. Following aging treatment at 600 °C, both steels experienced notable microstructural changes. Coarse carbides, B2, D0<sub>3</sub>, and β-Mn precipitates, appeared during the aging, leading to the deterioration of mechanical properties. The aging treatment improved strength but decreased ductility for both steels, with extended aging leading to deterioration attributed to coarse precipitate formation. Both steels demonstrated effective strain hardening behavior. The aging treatment on the steels significantly impacted the fracture morphologies. The investigation of deformation mechanisms reveals distinct behaviors under low strain conditions. The steels demonstrated a unique staggered dislocation structure and exceptional uniform elongation due to decreasing slip plane spacing. The strength was enhanced by interactions among dislocation arrangements within distinct domain boundaries.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"9 ","pages":"Article 100162"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917825000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the influence of Al content (9 wt% and 12 wt%) on the microstructure evolution, mechanical properties and deformation behavior of austenite-based Fe-Mn-Al-C lightweight steels were investigated. The Steel with 9 % Al content displayed a dual-phase structure with austenite and less than 5 % ferrite, while the Steel with 12 % Al content contained approximately 23 % ferrite and nanoscale κ-carbide precipitates, influenced by the Al content. Following aging treatment at 600 °C, both steels experienced notable microstructural changes. Coarse carbides, B2, D03, and β-Mn precipitates, appeared during the aging, leading to the deterioration of mechanical properties. The aging treatment improved strength but decreased ductility for both steels, with extended aging leading to deterioration attributed to coarse precipitate formation. Both steels demonstrated effective strain hardening behavior. The aging treatment on the steels significantly impacted the fracture morphologies. The investigation of deformation mechanisms reveals distinct behaviors under low strain conditions. The steels demonstrated a unique staggered dislocation structure and exceptional uniform elongation due to decreasing slip plane spacing. The strength was enhanced by interactions among dislocation arrangements within distinct domain boundaries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信