Global Business Networks

IF 10.4 1区 经济学 Q1 BUSINESS, FINANCE
Christian Breitung, Sebastian Müller
{"title":"Global Business Networks","authors":"Christian Breitung,&nbsp;Sebastian Müller","doi":"10.1016/j.jfineco.2025.104007","DOIUrl":null,"url":null,"abstract":"<div><div>We leverage the capabilities of GPT-3 to generate historical business descriptions for over 63,000 global firms. Utilizing these descriptions and advanced embedding models from OpenAI, we construct time-varying business networks that represent business links across the globe. We showcase the performance of these networks by studying the lead–lag effect for global stocks and predicting target firms in M&amp;A deals. We demonstrate how masking firm-specific details can mitigate look-ahead bias concerns that may arise from the use of embedding models with a recent knowledge cutoff, and how to differentiate between competitor, supplier, and customer links by fine-tuning an open-source language model.</div></div>","PeriodicalId":51346,"journal":{"name":"Journal of Financial Economics","volume":"166 ","pages":"Article 104007"},"PeriodicalIF":10.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304405X25000157","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We leverage the capabilities of GPT-3 to generate historical business descriptions for over 63,000 global firms. Utilizing these descriptions and advanced embedding models from OpenAI, we construct time-varying business networks that represent business links across the globe. We showcase the performance of these networks by studying the lead–lag effect for global stocks and predicting target firms in M&A deals. We demonstrate how masking firm-specific details can mitigate look-ahead bias concerns that may arise from the use of embedding models with a recent knowledge cutoff, and how to differentiate between competitor, supplier, and customer links by fine-tuning an open-source language model.
全球商业网络
我们利用GPT-3的功能为63,000多家全球公司生成历史业务描述。利用这些描述和OpenAI的高级嵌入模型,我们构建了代表全球业务链接的时变业务网络。我们通过研究全球股票的超前滞后效应和预测并购交易中的目标公司来展示这些网络的表现。我们演示了如何屏蔽公司特定的细节可以减轻由于使用具有最近知识截止的嵌入模型而可能产生的前瞻性偏见,以及如何通过微调开源语言模型来区分竞争对手、供应商和客户链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.80
自引率
4.50%
发文量
192
审稿时长
37 days
期刊介绍: The Journal of Financial Economics provides a specialized forum for the publication of research in the area of financial economics and the theory of the firm, placing primary emphasis on the highest quality analytical, empirical, and clinical contributions in the following major areas: capital markets, financial institutions, corporate finance, corporate governance, and the economics of organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信