Achieving isotropic ultra-high strength and fatigue properties in a wire arc directed energy deposited Al-Zn-Mg-Cu-Sc alloy via interlayer friction stir processing
IF 6.1 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinpeng Guo , Dingrui Ni , Huijun Li , Peng Xue , Zengxi Pan , Bosheng Dong , Zhijun Qiu , Zongyi Ma
{"title":"Achieving isotropic ultra-high strength and fatigue properties in a wire arc directed energy deposited Al-Zn-Mg-Cu-Sc alloy via interlayer friction stir processing","authors":"Xinpeng Guo , Dingrui Ni , Huijun Li , Peng Xue , Zengxi Pan , Bosheng Dong , Zhijun Qiu , Zongyi Ma","doi":"10.1016/j.msea.2025.148026","DOIUrl":null,"url":null,"abstract":"<div><div>Pore defects are the most critical issue in the wire arc directed energy deposition (WA-DED) of aluminum alloys, hindering their application in the aerospace and transportation field. The interlayer friction stir processing (FSP), as an innovative composite technique applied in WA-DED, not only effectively addresses pore defects but also improves the material's microstructure, significantly enhancing its tensile and fatigue properties. However, interlayer FSP-treated aluminum alloys are prone to abnormal grain growth (AGG) during subsequent heat treatment processes, leading to a significant reduction in mechanical performance. This study utilized a custom Al-Zn-Mg-Cu-Sc filler wire and employed a combination of WA-DED and interlayer FSP processes to manufacture an alloy that not only eliminates all pore defects but also shows no AGG phenomenon after T6 heat treatment. The manufactured alloy achieves isotropy in mechanical properties, with a tensile strength and elongation of 645 <span><math><mrow><mo>±</mo></mrow></math></span> 8 MPa and 12.6 <span><math><mrow><mo>±</mo></mrow></math></span> 0.5 %, respectively. The fatigue performance is significantly improved to 250 MPa, marking the highest values in the field of WA-DED aluminum alloys to date. This method provides a feasible approach for eliminating defects and achieving isotropy in aluminum alloys during the additive manufacturing process.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"927 ","pages":"Article 148026"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325002448","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pore defects are the most critical issue in the wire arc directed energy deposition (WA-DED) of aluminum alloys, hindering their application in the aerospace and transportation field. The interlayer friction stir processing (FSP), as an innovative composite technique applied in WA-DED, not only effectively addresses pore defects but also improves the material's microstructure, significantly enhancing its tensile and fatigue properties. However, interlayer FSP-treated aluminum alloys are prone to abnormal grain growth (AGG) during subsequent heat treatment processes, leading to a significant reduction in mechanical performance. This study utilized a custom Al-Zn-Mg-Cu-Sc filler wire and employed a combination of WA-DED and interlayer FSP processes to manufacture an alloy that not only eliminates all pore defects but also shows no AGG phenomenon after T6 heat treatment. The manufactured alloy achieves isotropy in mechanical properties, with a tensile strength and elongation of 645 8 MPa and 12.6 0.5 %, respectively. The fatigue performance is significantly improved to 250 MPa, marking the highest values in the field of WA-DED aluminum alloys to date. This method provides a feasible approach for eliminating defects and achieving isotropy in aluminum alloys during the additive manufacturing process.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.