The failure behavior of prefabricated fractured sandstone with different rock bridge inclination angles under freeze-thaw cycles

Meilu Yu , Zhongwen Wang , Ying Xu , Yanhai Chang , Luyu Wang , Yulong Zhu
{"title":"The failure behavior of prefabricated fractured sandstone with different rock bridge inclination angles under freeze-thaw cycles","authors":"Meilu Yu ,&nbsp;Zhongwen Wang ,&nbsp;Ying Xu ,&nbsp;Yanhai Chang ,&nbsp;Luyu Wang ,&nbsp;Yulong Zhu","doi":"10.1016/j.uncres.2025.100152","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the fractured rock samples with different dip angles of rock bridge are taken as the research object, and the freeze-thaw cycle test and uniaxial compression test are carried out successively. Combined with digital image correlation technology (DIC) and numerical simulation, the failure process of prefabricated fractured sandstone with different rock bridge dip angles was studied. The results show that the frost heaving force caused by freezing and thawing will cause irreversible damage to the rock sample. Especially at the tip of the prefabricated crack, macroscopic frost heaving cracks will occur. Frost heaving cracks can reduce the stress concentration at the crack tip, which leads to a decrease in tensile cracks during loading. With the increase of the inclination angle of the rock bridge, both the modulus and the peak stress show an inverted “spoon-shaped” trend of increasing first and then decreasing. The tensile effect of the frost heave force generated by the freeze-thaw process leads to the early development and expansion of the prefabricated cracks. Under the action of external load, according to the law of crack development, the failure mode of rock bridge can be divided into shear failure (S type), tensile failure (T type) and tensile-shear composite failure (M type). The relative displacement evolution curve of the characteristic points on both sides of the fracture surface is basically consistent with the evolution characteristics of the strain field. According to whether the <em>x</em>-direction and <em>y</em>-direction displacement curves of the feature points deviate from each other, the type of driving force of fracture propagation can be judged.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"6 ","pages":"Article 100152"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519025000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the fractured rock samples with different dip angles of rock bridge are taken as the research object, and the freeze-thaw cycle test and uniaxial compression test are carried out successively. Combined with digital image correlation technology (DIC) and numerical simulation, the failure process of prefabricated fractured sandstone with different rock bridge dip angles was studied. The results show that the frost heaving force caused by freezing and thawing will cause irreversible damage to the rock sample. Especially at the tip of the prefabricated crack, macroscopic frost heaving cracks will occur. Frost heaving cracks can reduce the stress concentration at the crack tip, which leads to a decrease in tensile cracks during loading. With the increase of the inclination angle of the rock bridge, both the modulus and the peak stress show an inverted “spoon-shaped” trend of increasing first and then decreasing. The tensile effect of the frost heave force generated by the freeze-thaw process leads to the early development and expansion of the prefabricated cracks. Under the action of external load, according to the law of crack development, the failure mode of rock bridge can be divided into shear failure (S type), tensile failure (T type) and tensile-shear composite failure (M type). The relative displacement evolution curve of the characteristic points on both sides of the fracture surface is basically consistent with the evolution characteristics of the strain field. According to whether the x-direction and y-direction displacement curves of the feature points deviate from each other, the type of driving force of fracture propagation can be judged.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信