Nitrogen and sulfur Co-doped carbon dots with excellent fluorescent thermal stability for anti-counterfeiting and information encryption

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nouman Ahmed , Manzoor Hussain , Aumber abbas , Tauqeer Haidar Qamar , Sibt ul Hassan , Pengkun Xia , Lei Ma , Xiaohui Gao , Lianwen Deng
{"title":"Nitrogen and sulfur Co-doped carbon dots with excellent fluorescent thermal stability for anti-counterfeiting and information encryption","authors":"Nouman Ahmed ,&nbsp;Manzoor Hussain ,&nbsp;Aumber abbas ,&nbsp;Tauqeer Haidar Qamar ,&nbsp;Sibt ul Hassan ,&nbsp;Pengkun Xia ,&nbsp;Lei Ma ,&nbsp;Xiaohui Gao ,&nbsp;Lianwen Deng","doi":"10.1016/j.orgel.2025.107197","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a series of nitrogen and sulfur co-doped carbon dots (CDs) were synthesized with high photoluminescence quantum yields (PLQYs) and outstanding thermal stability. With the reaction solvent changing from water, ethanol, methanol, and dimethylformamide (DMF), a significant fluorescence emission with PLQY improvement from 42 %, 33 %, 25 %, and 18 %, respectively, accompanied by a red shift from 430 to 590 nm, (the color changes from blue, green, yellow, and red respectively). Simultaneously, excellent fluorescence stability can also be obtained across temperatures ranging from 15 to 95 °C. Combined with the density functional calculations (DFT) results, the underlying mechanism investigation reveals that the color change of fluorescence emission was probably induced by the increased particle size of CDs and increased graphitic N content. The enhanced thermal stability is induced by the presence of stable surface functional groups, including C=O, C=N, C=S, and -NH, among others, contributing to improved hydrophilicity, regulated particle aggregation, and mitigated thermal oxidation by limiting oxygen diffusion to fluorescent hubs. Notably, the obtained outstanding optical properties finally render these multicolor CDs suitable for information encryption and anti-counterfeiting applications.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"139 ","pages":"Article 107197"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a series of nitrogen and sulfur co-doped carbon dots (CDs) were synthesized with high photoluminescence quantum yields (PLQYs) and outstanding thermal stability. With the reaction solvent changing from water, ethanol, methanol, and dimethylformamide (DMF), a significant fluorescence emission with PLQY improvement from 42 %, 33 %, 25 %, and 18 %, respectively, accompanied by a red shift from 430 to 590 nm, (the color changes from blue, green, yellow, and red respectively). Simultaneously, excellent fluorescence stability can also be obtained across temperatures ranging from 15 to 95 °C. Combined with the density functional calculations (DFT) results, the underlying mechanism investigation reveals that the color change of fluorescence emission was probably induced by the increased particle size of CDs and increased graphitic N content. The enhanced thermal stability is induced by the presence of stable surface functional groups, including C=O, C=N, C=S, and -NH, among others, contributing to improved hydrophilicity, regulated particle aggregation, and mitigated thermal oxidation by limiting oxygen diffusion to fluorescent hubs. Notably, the obtained outstanding optical properties finally render these multicolor CDs suitable for information encryption and anti-counterfeiting applications.

Abstract Image

氮硫共掺杂碳点具有优异的荧光热稳定性,用于防伪和信息加密
在这项工作中,合成了一系列氮和硫共掺杂碳点(CDs),具有高光致发光量子产率(PLQYs)和出色的热稳定性。当反应溶剂为水、乙醇、甲醇和二甲基甲酰胺(DMF)时,荧光发射显著,PLQY分别从42%、33%、25%和18%提高,并伴有从430 nm到590 nm的红移(颜色分别从蓝色、绿色、黄色和红色变化)。同时,优异的荧光稳定性也可以在15至95°C的温度范围内获得。结合密度泛函计算(DFT)的结果,揭示了荧光发射的颜色变化可能是由于cd颗粒尺寸的增大和石墨N含量的增加引起的。增强的热稳定性是由稳定的表面官能团(包括C=O, C=N, C=S和- nhh等)的存在引起的,这些官能团有助于改善亲水性,调节颗粒聚集,并通过限制氧向荧光中心扩散来减轻热氧化。值得注意的是,所获得的优异光学性能最终使这些多色光盘适用于信息加密和防伪应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信