Partitioning and removal of per- and polyfluoroalkyl substances (PFAS) in full-scale surface flow treatment wetlands with different upstream wastewater treatment

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Chiara Sarti , Ayisha Affo Souleymane , Gabriela Dotro , Alessandra Cincinelli , Tao Lyu
{"title":"Partitioning and removal of per- and polyfluoroalkyl substances (PFAS) in full-scale surface flow treatment wetlands with different upstream wastewater treatment","authors":"Chiara Sarti ,&nbsp;Ayisha Affo Souleymane ,&nbsp;Gabriela Dotro ,&nbsp;Alessandra Cincinelli ,&nbsp;Tao Lyu","doi":"10.1016/j.jwpe.2025.107236","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of treatment wetlands (TWs), as a nature-based solution, in mitigating persistent per- and polyfluoroalkyl substances (PFAS) and their interactions with existing treatment flowsheets remain unclear. This study investigated PFAS removal in two full-scale surface flow TWs treating secondary effluent from different domestic wastewater treatment plants (WWTPs). The systems demonstrated their capacities to safeguard natural water bodies by achieving discharge levels of the legacy PFOS (4–4.6 ng L<sup>−1</sup>) and PFOA (1.79–3.27 ng L<sup>−1</sup>) with removal efficiencies of 29%–38% and 15%–34%, respectively. Further upstream and downstream water quality monitoring in receiving waters is required to accurately evaluate PFAS contributions from WWTP effluents. Partitioning behaviour analysis revealed that sediment adsorption was the dominant removal pathway, achieving removal rates 16–61 times higher than plant uptake for PFOS and 1.8–6 times higher for PFOA. Sediment iron content, depth, and bulk density were positively correlated with PFAS sequestration, highlighting their importance in controlling PFAS mobility. PFOS accumulation in the sediment was greater in the TW for the WWTP dosing with ferric sulphate than the WWTP without chemical dosing (2.80 mg m<sup>−2</sup> y<sup>−1</sup> vs. 1.34 mg m<sup>−2</sup> y<sup>−1</sup>). Notably, a conventional mass balance analysis was challenged by the transformation of PFAS precursors into terminal compounds, including PFOS and PFOA, potentially inflating input concentrations and contributing to mass imbalance during treatment. Further research is necessary to address these complexities, but the findings are encouraging for the use of TWs as scalable, eco-friendly solutions for mitigating PFAS pollution and are instructive for optimising wetland design and operation to safeguard aquatic ecosystems.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"71 ","pages":"Article 107236"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714425003083","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of treatment wetlands (TWs), as a nature-based solution, in mitigating persistent per- and polyfluoroalkyl substances (PFAS) and their interactions with existing treatment flowsheets remain unclear. This study investigated PFAS removal in two full-scale surface flow TWs treating secondary effluent from different domestic wastewater treatment plants (WWTPs). The systems demonstrated their capacities to safeguard natural water bodies by achieving discharge levels of the legacy PFOS (4–4.6 ng L−1) and PFOA (1.79–3.27 ng L−1) with removal efficiencies of 29%–38% and 15%–34%, respectively. Further upstream and downstream water quality monitoring in receiving waters is required to accurately evaluate PFAS contributions from WWTP effluents. Partitioning behaviour analysis revealed that sediment adsorption was the dominant removal pathway, achieving removal rates 16–61 times higher than plant uptake for PFOS and 1.8–6 times higher for PFOA. Sediment iron content, depth, and bulk density were positively correlated with PFAS sequestration, highlighting their importance in controlling PFAS mobility. PFOS accumulation in the sediment was greater in the TW for the WWTP dosing with ferric sulphate than the WWTP without chemical dosing (2.80 mg m−2 y−1 vs. 1.34 mg m−2 y−1). Notably, a conventional mass balance analysis was challenged by the transformation of PFAS precursors into terminal compounds, including PFOS and PFOA, potentially inflating input concentrations and contributing to mass imbalance during treatment. Further research is necessary to address these complexities, but the findings are encouraging for the use of TWs as scalable, eco-friendly solutions for mitigating PFAS pollution and are instructive for optimising wetland design and operation to safeguard aquatic ecosystems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信