D. Keerthi Devi , M. Manisha , N. Venkatesham , Sridarala Ramu , Avula Edukondalu , Bandi Vittal Prasad
{"title":"Enhanced electrochemical properties of V2O5 and g-C3N4- V2O5 nanocomposites for rechargeable battery systems","authors":"D. Keerthi Devi , M. Manisha , N. Venkatesham , Sridarala Ramu , Avula Edukondalu , Bandi Vittal Prasad","doi":"10.1016/j.jics.2025.101621","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructured V<sub>2</sub>O<sub>5</sub> (nanorods and nanoplatelets) and g-C<sub>3</sub>N<sub>4</sub>-V<sub>2</sub>O<sub>5</sub> nanocomposite were synthesized via thermal condensation method and characterized using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Visible diffuse reflectance spectroscopy (UV–Vis-DRS), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). XRD analysis confirmed the phase purity of the samples, while IR and UV–Vis spectroscopy revealed the presence of pure V<sub>2</sub>O<sub>5</sub> without impurities. The band gap of the V<sub>2</sub>O<sub>5</sub> nanostructures was calculated to be approximately 2.0 eV from the optical absorption edge. SEM and TEM analysis revealed particle sizes ranging from 15 to 35 nm, with higher concentrations of oxalic acid yielding smaller particles. The quantity of oxalic acid was found to significantly influence the final morphology of the nanostructures. Electrochemical studies revealed good mobility and reversibility of cation, with reduced resistance and enhanced charge transfer kinetics in the g-C<sub>3</sub>N<sub>4</sub>-V<sub>2</sub>O<sub>5</sub> nanocomposite. The nanocomposite exhibited a high discharge capacity of 320 mAh/g and a capacity retention of 85 % after 100 cycles. Impedance studies further revealed reduced resistance in the nanocomposite materials, indicating enhanced charge transfer kinetics. The synthesized V<sub>2</sub>O<sub>5</sub> nanorods, nanoplatelets, and g-C<sub>3</sub>N<sub>4</sub>-V<sub>2</sub>O<sub>5</sub> nanocomposite show promise as cathode materials for magnesium ion rechargeable batteries.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 3","pages":"Article 101621"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225000561","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructured V2O5 (nanorods and nanoplatelets) and g-C3N4-V2O5 nanocomposite were synthesized via thermal condensation method and characterized using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Visible diffuse reflectance spectroscopy (UV–Vis-DRS), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). XRD analysis confirmed the phase purity of the samples, while IR and UV–Vis spectroscopy revealed the presence of pure V2O5 without impurities. The band gap of the V2O5 nanostructures was calculated to be approximately 2.0 eV from the optical absorption edge. SEM and TEM analysis revealed particle sizes ranging from 15 to 35 nm, with higher concentrations of oxalic acid yielding smaller particles. The quantity of oxalic acid was found to significantly influence the final morphology of the nanostructures. Electrochemical studies revealed good mobility and reversibility of cation, with reduced resistance and enhanced charge transfer kinetics in the g-C3N4-V2O5 nanocomposite. The nanocomposite exhibited a high discharge capacity of 320 mAh/g and a capacity retention of 85 % after 100 cycles. Impedance studies further revealed reduced resistance in the nanocomposite materials, indicating enhanced charge transfer kinetics. The synthesized V2O5 nanorods, nanoplatelets, and g-C3N4-V2O5 nanocomposite show promise as cathode materials for magnesium ion rechargeable batteries.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.