Estimation of high-pressure speed of sound for biodiesel using the QSPR-Gibbs energy additivity method

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-02-13 DOI:10.1016/j.fuel.2025.134589
Thinnaphop Chum-in , Manat Chaijan , Worawan Panpipat , Suriya Phankosol , Jaspreet Singh , Dapeng Li
{"title":"Estimation of high-pressure speed of sound for biodiesel using the QSPR-Gibbs energy additivity method","authors":"Thinnaphop Chum-in ,&nbsp;Manat Chaijan ,&nbsp;Worawan Panpipat ,&nbsp;Suriya Phankosol ,&nbsp;Jaspreet Singh ,&nbsp;Dapeng Li","doi":"10.1016/j.fuel.2025.134589","DOIUrl":null,"url":null,"abstract":"<div><div>The speed of sound (SoS), influenced by the chemical composition of biodiesel feedstock, temperature, and pressure, is of significant importance in various applications. This study aims to propose estimative models for high-pressure speed of sound using the Qualitative Structure-Property Relationship (QSPR) approach with the Gibbs Energy Additivity (GEA) method. High-pressure speed of sound data for pure fatty acid methyl esters and biodiesels were collected from previous literature for numerical determination and model validation. Two approaches were employed to enhance estimative ability: dividing pressure into shorter ranges and utilizing polynomial correlations. Consequently, the long pressure range was divided into three segments for linear correlation: Pressure Range I (PR I, 0.1 – 50 MPa), Pressure Range II (PR II, 50 – 100 MPa), and Pressure Range III (PR III, 100 – 210 MPa). Additionally, for polynomial correlation, the pressure range was segmented into Polynomial Function I (PRP I, 0.1 – 100 MPa) and Polynomial Function II (PRP II, 100 – 210 MPa). Results demonstrated excellent agreement between estimated and literature sound speed values for both methods, with a lower Average Absolute Deviation (<em>AAD</em>) than previous methods. However, the second-order polynomial correlation model demonstrated superior capability in estimating sound speed, with <em>AADs</em> of 0.24 % and 0.06 % for biodiesel under PRP I and PRP II, respectively, and an overall <em>AAD</em> of 0.22 % for pure FAME and biodiesel under PRP I. Furthermore, the proposed model was used to extrapolate untested sound speed data for pure FAME across a temperature range of 293.15 K to 373.15 K and pressures up to 200 MPa.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"390 ","pages":"Article 134589"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125003138","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The speed of sound (SoS), influenced by the chemical composition of biodiesel feedstock, temperature, and pressure, is of significant importance in various applications. This study aims to propose estimative models for high-pressure speed of sound using the Qualitative Structure-Property Relationship (QSPR) approach with the Gibbs Energy Additivity (GEA) method. High-pressure speed of sound data for pure fatty acid methyl esters and biodiesels were collected from previous literature for numerical determination and model validation. Two approaches were employed to enhance estimative ability: dividing pressure into shorter ranges and utilizing polynomial correlations. Consequently, the long pressure range was divided into three segments for linear correlation: Pressure Range I (PR I, 0.1 – 50 MPa), Pressure Range II (PR II, 50 – 100 MPa), and Pressure Range III (PR III, 100 – 210 MPa). Additionally, for polynomial correlation, the pressure range was segmented into Polynomial Function I (PRP I, 0.1 – 100 MPa) and Polynomial Function II (PRP II, 100 – 210 MPa). Results demonstrated excellent agreement between estimated and literature sound speed values for both methods, with a lower Average Absolute Deviation (AAD) than previous methods. However, the second-order polynomial correlation model demonstrated superior capability in estimating sound speed, with AADs of 0.24 % and 0.06 % for biodiesel under PRP I and PRP II, respectively, and an overall AAD of 0.22 % for pure FAME and biodiesel under PRP I. Furthermore, the proposed model was used to extrapolate untested sound speed data for pure FAME across a temperature range of 293.15 K to 373.15 K and pressures up to 200 MPa.

Abstract Image

用QSPR-Gibbs能量相加法估计生物柴油的高压声速
声速(SoS)受生物柴油原料的化学成分、温度和压力的影响,在各种应用中具有重要意义。本研究旨在利用定性结构-性质关系(QSPR)方法和Gibbs能量可加性(GEA)方法建立高压声速的估计模型。从文献中收集纯脂肪酸甲酯和生物柴油的高压声速数据,进行数值计算和模型验证。采用两种方法来提高估计能力:将压力划分为更短的范围和利用多项式相关性。因此,将长压力范围划分为三个线性相关段:压力范围I (PR I, 0.1 - 50 MPa),压力范围II (PR II, 50 - 100 MPa)和压力范围III (PR III, 100 - 210 MPa)。此外,为了多项式相关性,将压力范围划分为多项式函数I (PRP I, 0.1 - 100 MPa)和多项式函数II (PRP II, 100 - 210 MPa)。结果表明,两种方法的估计声速值与文献声速值非常吻合,平均绝对偏差(AAD)低于以前的方法。然而,二阶多项式相关模型在估计声速方面表现出更强的能力,在PRPⅰ和PRPⅱ条件下,生物柴油的平均声速平均为0.24%和0.06%,而在PRPⅰ条件下,纯FAME和生物柴油的总体平均声速平均为0.22%。此外,该模型还用于在293.15 K ~ 373.15 K和200 MPa压力下推断纯FAME的未测试声速数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信