Finite element analysis of the osseous spiral lamina’s influence on inner ear fluid flow during bone conduction stimulation

IF 2.5 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Simon Kersten , Henning Taschke , Michael Vorländer
{"title":"Finite element analysis of the osseous spiral lamina’s influence on inner ear fluid flow during bone conduction stimulation","authors":"Simon Kersten ,&nbsp;Henning Taschke ,&nbsp;Michael Vorländer","doi":"10.1016/j.heares.2025.109205","DOIUrl":null,"url":null,"abstract":"<div><div>Recent studies have investigated the anatomy and motion of the human cochlear partition, revealing insights into the flexible nature of the osseous spiral lamina (OSL). These investigations have primarily focused on air-conducted stimulation, leaving the impact of the OSL’s flexibility during bone-conducted (BC) stimulation largely unexplored. By considering the OSL as either flexible or rigid in a finite element model of the human inner ear, we examined the effect of the OSL’s flexibility on the fluid flow in the inner ear during BC stimulation, which was divided into contributors entering via the oval window (OW) and rigid body stimulation.</div><div>Our results with rigid body stimulation indicate that the OSL facilitates an increased differential fluid flow at the round window compared to the OW, aligning with experimental observations interpreted as third window effects. Analysis of the OSL motion showed that this contribution results from a compressional motion of the OSL’s vestibular and tympanic plates which is significantly lower in magnitude than the plates’ translation in the direction of the stimulation. Separately applying OW input and rigid body stimulation provided insights into the interaction of BC sound entering via the OW and the reaction of the stapes to complex interior sound pressure distributions. Combined with the observations from a prior study (Kersten et al., 2024b) our results suggest a more important role for the OSL in BC hearing than previously understood. These findings enhance our understanding of the inner ear’s response during BC and contribute to ongoing investigations into the interaction of BC mechanisms, while highlighting the need for further research into the deformation of the cochlear boundaries.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"459 ","pages":"Article 109205"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595525000243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have investigated the anatomy and motion of the human cochlear partition, revealing insights into the flexible nature of the osseous spiral lamina (OSL). These investigations have primarily focused on air-conducted stimulation, leaving the impact of the OSL’s flexibility during bone-conducted (BC) stimulation largely unexplored. By considering the OSL as either flexible or rigid in a finite element model of the human inner ear, we examined the effect of the OSL’s flexibility on the fluid flow in the inner ear during BC stimulation, which was divided into contributors entering via the oval window (OW) and rigid body stimulation.
Our results with rigid body stimulation indicate that the OSL facilitates an increased differential fluid flow at the round window compared to the OW, aligning with experimental observations interpreted as third window effects. Analysis of the OSL motion showed that this contribution results from a compressional motion of the OSL’s vestibular and tympanic plates which is significantly lower in magnitude than the plates’ translation in the direction of the stimulation. Separately applying OW input and rigid body stimulation provided insights into the interaction of BC sound entering via the OW and the reaction of the stapes to complex interior sound pressure distributions. Combined with the observations from a prior study (Kersten et al., 2024b) our results suggest a more important role for the OSL in BC hearing than previously understood. These findings enhance our understanding of the inner ear’s response during BC and contribute to ongoing investigations into the interaction of BC mechanisms, while highlighting the need for further research into the deformation of the cochlear boundaries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hearing Research
Hearing Research 医学-耳鼻喉科学
CiteScore
5.30
自引率
14.30%
发文量
163
审稿时长
75 days
期刊介绍: The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles. Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信