Existence and convergence of stochastic processes underlying a thin layer approximation of a coupled bulk-surface PDE

IF 2.4 2区 数学 Q1 MATHEMATICS
Adam Bobrowski , Anotida Madzvamuse , Elżbieta Ratajczyk
{"title":"Existence and convergence of stochastic processes underlying a thin layer approximation of a coupled bulk-surface PDE","authors":"Adam Bobrowski ,&nbsp;Anotida Madzvamuse ,&nbsp;Elżbieta Ratajczyk","doi":"10.1016/j.jde.2025.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>We study a system of coupled bulk-surface partial differential equations (BS-PDEs), describing changes in concentration of certain proteins (Rho GTPases) in a living cell. These proteins, when activated, are bound to the plasma membrane where they diffuse and react with the inactive species; inactivated species diffuse inside the cell cortex; these react with the activated species when they are close to the plasma membrane. For our case study, we model the cell cortex as an annulus, and the plasma membrane as its outer circle.</div><div>Mathematically, the aim of the paper is twofold: Firstly, we show the master equation for the changes in concentration of Rho GTPases is the Kolmogorov forward differential equation for an underlying Feller stochastic process, and, in particular, the related Cauchy problem is well-posed. Secondly, since the cell cortex is typically a rather thin domain, we study the situation where the thickness of the annulus modeling the cortex converges to 0. To this end, we note that letting the thickness of the annulus to 0 is equivalent to keeping it constant while increasing the rate of radial diffusion. As a result, in the limit, solutions to the master equation lose dependence on the radial coordinate and can be thought of as functions on the circle. Furthermore, the limit master equation can be seen as describing diffusion on two copies of the circle with jumps from one copy to the other.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"428 ","pages":"Pages 113-158"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001160","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a system of coupled bulk-surface partial differential equations (BS-PDEs), describing changes in concentration of certain proteins (Rho GTPases) in a living cell. These proteins, when activated, are bound to the plasma membrane where they diffuse and react with the inactive species; inactivated species diffuse inside the cell cortex; these react with the activated species when they are close to the plasma membrane. For our case study, we model the cell cortex as an annulus, and the plasma membrane as its outer circle.
Mathematically, the aim of the paper is twofold: Firstly, we show the master equation for the changes in concentration of Rho GTPases is the Kolmogorov forward differential equation for an underlying Feller stochastic process, and, in particular, the related Cauchy problem is well-posed. Secondly, since the cell cortex is typically a rather thin domain, we study the situation where the thickness of the annulus modeling the cortex converges to 0. To this end, we note that letting the thickness of the annulus to 0 is equivalent to keeping it constant while increasing the rate of radial diffusion. As a result, in the limit, solutions to the master equation lose dependence on the radial coordinate and can be thought of as functions on the circle. Furthermore, the limit master equation can be seen as describing diffusion on two copies of the circle with jumps from one copy to the other.
体表耦合 PDE 薄层近似下随机过程的存在性和收敛性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信