Novel poly(ether sulfone isopropyl sulfide) support layer in thin film composite membrane for desalination

IF 5.5 Q1 ENGINEERING, CHEMICAL
Armaghan Moghaddam, Shahram Mehdipour-Ataei, Samal Babanzadeh
{"title":"Novel poly(ether sulfone isopropyl sulfide) support layer in thin film composite membrane for desalination","authors":"Armaghan Moghaddam,&nbsp;Shahram Mehdipour-Ataei,&nbsp;Samal Babanzadeh","doi":"10.1016/j.ceja.2025.100717","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this research was to design a new polysulfone for the support layer of thin film composite (TFC) membranes and compare it with commercial structures for desalination applications. Accordingly, a novel random terpolymer was synthesized using the polycondensation reaction of bisphenol A and thiodiphenol with dichlorodiphenyl sulfone, comprising both methyl and sulfide groups in the backbone of the polymer. Subsequently, three asymmetric support layers were prepared using: the terpolymer, a polymer blend based on commercial polysulfone and a sulfide-containing polysulfone, and commercial polysulfone. Next, TFCs were prepared through the interfacial polymerization of polyamide on aforementioned support layers. Characterization was performed using <sup>1</sup>H NMR, FTIR, GPC, tensile test, water contact angle, DSC, TGA, SEM, ATR-FTIR, AFM, and zeta potential analyses. M<sub>w</sub>, Young's modulus, and contact angle of prepared terpolymer were 88,000 g.mol<sup>−1</sup>, 3684 MPa, and 59˚ which were predominant properties in respect to commercial polysulfone with 66,000 g.mol<sup>−1</sup>, 2541 MPa, and 73˚ values, respectively. AFM analysis showed that the mean difference between the highest peaks and lowest valleys increased from 79 nm for commercial polysulfone to 219 nm for synthesized terpolymer. Finally, superior performance was observed for the terpolymer-based TFC with 97% NaCl rejection and excellent 91.8% saline solution flux recovery when tested against NaCl salt and BSA as a natural biofoulant. Long-term stability of water flux and salt rejection were observed as well, reaching ∼ 27 L.m<sup>−2</sup>.h<sup>−1</sup> and 97.5% values, respectively. The results indicated that this terpolymer could be a promising substitute for commercial polysulfone in water purification membranes.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"22 ","pages":"Article 100717"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this research was to design a new polysulfone for the support layer of thin film composite (TFC) membranes and compare it with commercial structures for desalination applications. Accordingly, a novel random terpolymer was synthesized using the polycondensation reaction of bisphenol A and thiodiphenol with dichlorodiphenyl sulfone, comprising both methyl and sulfide groups in the backbone of the polymer. Subsequently, three asymmetric support layers were prepared using: the terpolymer, a polymer blend based on commercial polysulfone and a sulfide-containing polysulfone, and commercial polysulfone. Next, TFCs were prepared through the interfacial polymerization of polyamide on aforementioned support layers. Characterization was performed using 1H NMR, FTIR, GPC, tensile test, water contact angle, DSC, TGA, SEM, ATR-FTIR, AFM, and zeta potential analyses. Mw, Young's modulus, and contact angle of prepared terpolymer were 88,000 g.mol−1, 3684 MPa, and 59˚ which were predominant properties in respect to commercial polysulfone with 66,000 g.mol−1, 2541 MPa, and 73˚ values, respectively. AFM analysis showed that the mean difference between the highest peaks and lowest valleys increased from 79 nm for commercial polysulfone to 219 nm for synthesized terpolymer. Finally, superior performance was observed for the terpolymer-based TFC with 97% NaCl rejection and excellent 91.8% saline solution flux recovery when tested against NaCl salt and BSA as a natural biofoulant. Long-term stability of water flux and salt rejection were observed as well, reaching ∼ 27 L.m−2.h−1 and 97.5% values, respectively. The results indicated that this terpolymer could be a promising substitute for commercial polysulfone in water purification membranes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信