Ekramy M. Elmorsy , Huda A. Al Doghaither , Ayat B. Al-Ghafari , Saad Amer , Manal S. Fawzy , Eman A. Toraih
{"title":"Fucoxanthin mitigates mercury-induced mitochondrial toxicity in the human ovarian granulosa cell line","authors":"Ekramy M. Elmorsy , Huda A. Al Doghaither , Ayat B. Al-Ghafari , Saad Amer , Manal S. Fawzy , Eman A. Toraih","doi":"10.1016/j.reprotox.2025.108855","DOIUrl":null,"url":null,"abstract":"<div><div>Mercury (Hg) is known to be a hazardous toxin with a significant negative impact on female reproduction through mechanisms that remain unclear. The carotenoid fucoxanthin (FX) is an antioxidant with several positive effects on human health. This study aimed to examine the potential protective role of FX in reducing the Hg-induced bioenergetic disturbances in a human ovarian granulosa cell line model. (methods briefly) Hg was found to reduce the viability of granulosa cells in a concentration-dependent manner, with an estimated 72-hour EC50 of 10 µM. In contrast, FX (10 and 20 µM) improved cell viability. Hg (1 and 10 µM) significantly reduced cellular ATP levels, mitochondrial membrane potential, oxygen consumption rates, and lactate production. Additionally, Hg impaired the activities and kinetics of mitochondrial complexes I and III and reduced the expression of mitochondrial genes ND1, ND5, cytochrome B, cytochrome C oxidase, and ATP synthase subunits 6 and 8. According to tests on mitochondrial membranes, Hg increased membrane fluidity by reducing saturated fatty acid levels and increasing those of unsaturated fatty acids. Hg also promoted mitochondrial swelling and enhanced the inner mitochondrial membrane permeability to hydrogen and potassium ions. FX (10 µM) was shown to mitigate the negative effects of Hg on the viability of treated granulosa cells, bioenergetics parameters, and mitochondrial membrane integrity in a concentration-dependent manner. Based on these findings, bioenergetic disruption may be a key underlying cause of Hg-induced ovarian dysfunction. Furthermore, FX may have a potential therapeutic role in treating ovarian disorders caused by Hg-induced disruption of granulosa cell bioenergetics.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"132 ","pages":"Article 108855"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623825000267","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mercury (Hg) is known to be a hazardous toxin with a significant negative impact on female reproduction through mechanisms that remain unclear. The carotenoid fucoxanthin (FX) is an antioxidant with several positive effects on human health. This study aimed to examine the potential protective role of FX in reducing the Hg-induced bioenergetic disturbances in a human ovarian granulosa cell line model. (methods briefly) Hg was found to reduce the viability of granulosa cells in a concentration-dependent manner, with an estimated 72-hour EC50 of 10 µM. In contrast, FX (10 and 20 µM) improved cell viability. Hg (1 and 10 µM) significantly reduced cellular ATP levels, mitochondrial membrane potential, oxygen consumption rates, and lactate production. Additionally, Hg impaired the activities and kinetics of mitochondrial complexes I and III and reduced the expression of mitochondrial genes ND1, ND5, cytochrome B, cytochrome C oxidase, and ATP synthase subunits 6 and 8. According to tests on mitochondrial membranes, Hg increased membrane fluidity by reducing saturated fatty acid levels and increasing those of unsaturated fatty acids. Hg also promoted mitochondrial swelling and enhanced the inner mitochondrial membrane permeability to hydrogen and potassium ions. FX (10 µM) was shown to mitigate the negative effects of Hg on the viability of treated granulosa cells, bioenergetics parameters, and mitochondrial membrane integrity in a concentration-dependent manner. Based on these findings, bioenergetic disruption may be a key underlying cause of Hg-induced ovarian dysfunction. Furthermore, FX may have a potential therapeutic role in treating ovarian disorders caused by Hg-induced disruption of granulosa cell bioenergetics.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.