8-Hydroxyquinoline based novel fluorogenic sensor for Sensitive and selective Cd2+ detection and its Applications: Soil, Foodstuffs, smartphone and living cell
{"title":"8-Hydroxyquinoline based novel fluorogenic sensor for Sensitive and selective Cd2+ detection and its Applications: Soil, Foodstuffs, smartphone and living cell","authors":"Meliha Kutluca Alici","doi":"10.1016/j.jphotochem.2025.116336","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium is extensively utilized in various fields, mostly in industry and agriculture. Cadmium contamination of food, water, and soil can lead to major issues, like metabolic diseases and environmental degradation. The detection of cadmium is important due to these problems. In this study, an uncomplicated, efficient, and reversible fluorogenic sensor, <strong>HQM</strong> (2-amino-3-(((8-hydroxyquinolin-7-yl)methylene)amino)maleonitrile), composed of 7-formyl-8-hydroxyquinoline linked to diaminomalonitrile, was created for the determination of Cd<sup>2+</sup>. the sensor exhibited high selectivity for Cd<sup>2+</sup> among various metal ions. The detection limit of <strong>HQM</strong> for Cd<sup>2+</sup> was calculated as 0.25 µM. Application experiments on soil, foodstuffs, and living cells demonstrated the effective in-situ detection capabilities of <strong>HQM</strong> for Cd<sup>2+</sup>, indicating its promising potential for simple, rapid, and in-situ monitoring of Cd<sup>2+</sup> in solutions.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"464 ","pages":"Article 116336"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025000760","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium is extensively utilized in various fields, mostly in industry and agriculture. Cadmium contamination of food, water, and soil can lead to major issues, like metabolic diseases and environmental degradation. The detection of cadmium is important due to these problems. In this study, an uncomplicated, efficient, and reversible fluorogenic sensor, HQM (2-amino-3-(((8-hydroxyquinolin-7-yl)methylene)amino)maleonitrile), composed of 7-formyl-8-hydroxyquinoline linked to diaminomalonitrile, was created for the determination of Cd2+. the sensor exhibited high selectivity for Cd2+ among various metal ions. The detection limit of HQM for Cd2+ was calculated as 0.25 µM. Application experiments on soil, foodstuffs, and living cells demonstrated the effective in-situ detection capabilities of HQM for Cd2+, indicating its promising potential for simple, rapid, and in-situ monitoring of Cd2+ in solutions.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.