Soil-monopile interaction assessment of offshore wind turbines with comprehensive subsurface modelling to earthquake and environmental loads of wind and wave

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Faruk Elmas, Halil Murat Algin
{"title":"Soil-monopile interaction assessment of offshore wind turbines with comprehensive subsurface modelling to earthquake and environmental loads of wind and wave","authors":"Faruk Elmas,&nbsp;Halil Murat Algin","doi":"10.1016/j.soildyn.2025.109293","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic soil-structure interaction characteristics of MOWTs (monopile offshore wind turbines) constructed in complex ground conditions, including three-dimensional (3D) geomorphological variation, change of faults and geomorphological deformation, was investigated first time in literature with the presented paper using the finite element (FE) analyses. The FE models are built utilizing the robust image processing technique based on the data obtained from seismic profile field survey to incorporate complex sedimentological and seismostratigraphical evidences. In the 3D FE analyses the hypoplastic constitutive model is considered. The validation is carried out by comparing the results of the simulation with the literature. The soil-monopile-turbine interaction behaviour based on the non-linear time history responses under bilateral seismic excitation and environmental loads of wind and wave are investigated. It is concluded that dynamic response of the monopile system and soil-monopile-turbine interactions are significantly influenced by geomorphological subsurface variations. It is thus critical to take into account the 3D variations of sedimentological faults and deformations as identified through the seismic field survey in the context of 3D FE analyses.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"192 ","pages":"Article 109293"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125000867","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic soil-structure interaction characteristics of MOWTs (monopile offshore wind turbines) constructed in complex ground conditions, including three-dimensional (3D) geomorphological variation, change of faults and geomorphological deformation, was investigated first time in literature with the presented paper using the finite element (FE) analyses. The FE models are built utilizing the robust image processing technique based on the data obtained from seismic profile field survey to incorporate complex sedimentological and seismostratigraphical evidences. In the 3D FE analyses the hypoplastic constitutive model is considered. The validation is carried out by comparing the results of the simulation with the literature. The soil-monopile-turbine interaction behaviour based on the non-linear time history responses under bilateral seismic excitation and environmental loads of wind and wave are investigated. It is concluded that dynamic response of the monopile system and soil-monopile-turbine interactions are significantly influenced by geomorphological subsurface variations. It is thus critical to take into account the 3D variations of sedimentological faults and deformations as identified through the seismic field survey in the context of 3D FE analyses.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信