Land use change and forest management affect soil carbon stocks in the central hardwoods, U.S.

IF 3.1 2区 农林科学 Q2 SOIL SCIENCE
Lucas E. Nave , Kendall DeLyser , Grant M. Domke , Scott M. Holub , John M. Kabrick , Adrienne B. Keller , Patricia Leopold , Matthew P. Peters , Kevin A. Solarik , Christopher W. Swanston
{"title":"Land use change and forest management affect soil carbon stocks in the central hardwoods, U.S.","authors":"Lucas E. Nave ,&nbsp;Kendall DeLyser ,&nbsp;Grant M. Domke ,&nbsp;Scott M. Holub ,&nbsp;John M. Kabrick ,&nbsp;Adrienne B. Keller ,&nbsp;Patricia Leopold ,&nbsp;Matthew P. Peters ,&nbsp;Kevin A. Solarik ,&nbsp;Christopher W. Swanston","doi":"10.1016/j.geodrs.2025.e00930","DOIUrl":null,"url":null,"abstract":"<div><div>Most research addressing land use change and forest management effects on soil carbon (C) is conducted at large or localized scales, rather than intermediate scales where management is planned and implemented. We assessed effects of land use and forest management on soil C stocks, for the Central Hardwoods ecoregion of the U.S., using meta-analysis, soil survey and national forest inventory databases to examine baseline controls on soil C stocks and their responses to land use and forest management. Biotic and geologic factors drive baseline variation in soil C stocks across the ecoregion, with forest type and productivity being most important in surface horizons and parent material dominating at the whole profile level. Among forest management treatments, prescribed fire is most noteworthy, decreasing O horizons to an extent determined by place and practice (mean: −53 %). Coal mine reclamation is extensive in the region, and while there is no effect of forest vs. herbaceous reclamation, distinct overburden types have different effects on soil C stocks (mean: +183 %). Land use change effects on soil C are difficult to determine due to the preferential use of the most favorable soils for agriculture, the relegation of forests to the least productive soils, and the tendency for reforestation to occur on marginal soils. Overall, our results can help forest managers anticipate the C outcomes of typical burn prescriptions in this region of extensive prescribed fire, and help landowners and planners understand how parent material and soil properties influence soil C stocks under agriculture and mine reclamation.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"40 ","pages":"Article e00930"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235200942500015X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Most research addressing land use change and forest management effects on soil carbon (C) is conducted at large or localized scales, rather than intermediate scales where management is planned and implemented. We assessed effects of land use and forest management on soil C stocks, for the Central Hardwoods ecoregion of the U.S., using meta-analysis, soil survey and national forest inventory databases to examine baseline controls on soil C stocks and their responses to land use and forest management. Biotic and geologic factors drive baseline variation in soil C stocks across the ecoregion, with forest type and productivity being most important in surface horizons and parent material dominating at the whole profile level. Among forest management treatments, prescribed fire is most noteworthy, decreasing O horizons to an extent determined by place and practice (mean: −53 %). Coal mine reclamation is extensive in the region, and while there is no effect of forest vs. herbaceous reclamation, distinct overburden types have different effects on soil C stocks (mean: +183 %). Land use change effects on soil C are difficult to determine due to the preferential use of the most favorable soils for agriculture, the relegation of forests to the least productive soils, and the tendency for reforestation to occur on marginal soils. Overall, our results can help forest managers anticipate the C outcomes of typical burn prescriptions in this region of extensive prescribed fire, and help landowners and planners understand how parent material and soil properties influence soil C stocks under agriculture and mine reclamation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma Regional
Geoderma Regional Agricultural and Biological Sciences-Soil Science
CiteScore
6.10
自引率
7.30%
发文量
122
审稿时长
76 days
期刊介绍: Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信