Ginkgo leaf nanoarchitectonics-derived carbon materials containing ultrathin carbon nanosheets for high-performance symmetric supercapacitors

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Lihua Zhang , Xiaoyang Cheng , Lingyan Li , Hao Wu , Jinfeng Zheng , Jingwei Li , Ting Yi
{"title":"Ginkgo leaf nanoarchitectonics-derived carbon materials containing ultrathin carbon nanosheets for high-performance symmetric supercapacitors","authors":"Lihua Zhang ,&nbsp;Xiaoyang Cheng ,&nbsp;Lingyan Li ,&nbsp;Hao Wu ,&nbsp;Jinfeng Zheng ,&nbsp;Jingwei Li ,&nbsp;Ting Yi","doi":"10.1016/j.jpcs.2025.112624","DOIUrl":null,"url":null,"abstract":"<div><div>The carbon material derived from ginkgo leaves is composed of stacked ultra-thin carbon nanosheets. To this end, carbon materials containing ultra-thin carbon nanosheets were prepared by using ginkgo leaf as a carbon source and KCl as a stripping agent. The study found that the formation of ultra-thin carbon nanosheets depends on the structure of the biomass, and only Cl<sup>−</sup> in KCl produces a stripping effect, independent of K<sup>+</sup>. The composition and structure of carbon materials are closely related to the mass of KCl, and different KCl mass can make carbon materials have different specific surface area and heteroatom content. When 12 g KCl was added, the prepared GCK-12 had the highest heteroatom content and medium specific surface area. Electrochemical test results show that the electrochemical performance of KCl-modified carbon materials is higher than that of unmodified carbon materials, indicating that ultra-thin carbon nanosheets provide more active sites for electrodes. Among them, GCK-12 has the best electrochemical performance, and the specific capacitance is 240 F g<sup>−1</sup> when the current density is 1 A g<sup>−1</sup>. Above or below 12 g, the specific capacitance will be reduced. The symmetric supercapacitors assembled with GCK-12 have an energy density of up to 15 Wh kg<sup>−1</sup>, which is superior to previously reported biomass carbon materials. By analyzing the relationship between the structure and electrochemical performance of GCK-12, it can be seen that increasing the heteroatom content is more beneficial to improve the electrochemical performance than increasing the specific surface area. This work not only provides a new method for the preparation of ultra-thin carbon nanosheets, but also provides a new idea for the design and synthesis of high-performance carbon materials.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"200 ","pages":"Article 112624"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725000757","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon material derived from ginkgo leaves is composed of stacked ultra-thin carbon nanosheets. To this end, carbon materials containing ultra-thin carbon nanosheets were prepared by using ginkgo leaf as a carbon source and KCl as a stripping agent. The study found that the formation of ultra-thin carbon nanosheets depends on the structure of the biomass, and only Cl in KCl produces a stripping effect, independent of K+. The composition and structure of carbon materials are closely related to the mass of KCl, and different KCl mass can make carbon materials have different specific surface area and heteroatom content. When 12 g KCl was added, the prepared GCK-12 had the highest heteroatom content and medium specific surface area. Electrochemical test results show that the electrochemical performance of KCl-modified carbon materials is higher than that of unmodified carbon materials, indicating that ultra-thin carbon nanosheets provide more active sites for electrodes. Among them, GCK-12 has the best electrochemical performance, and the specific capacitance is 240 F g−1 when the current density is 1 A g−1. Above or below 12 g, the specific capacitance will be reduced. The symmetric supercapacitors assembled with GCK-12 have an energy density of up to 15 Wh kg−1, which is superior to previously reported biomass carbon materials. By analyzing the relationship between the structure and electrochemical performance of GCK-12, it can be seen that increasing the heteroatom content is more beneficial to improve the electrochemical performance than increasing the specific surface area. This work not only provides a new method for the preparation of ultra-thin carbon nanosheets, but also provides a new idea for the design and synthesis of high-performance carbon materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信