A high sensitivity assay of UBE3A ubiquitin ligase activity

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Linna Han, Z. Begum Yagci, Albert J. Keung
{"title":"A high sensitivity assay of UBE3A ubiquitin ligase activity","authors":"Linna Han,&nbsp;Z. Begum Yagci,&nbsp;Albert J. Keung","doi":"10.1016/j.ymeth.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>UBE3A is an E3 ubiquitin ligase associated with several neurodevelopmental disorders. The development of several preclinical therapeutic approaches involving UBE3A, such as gene therapy, enzyme replacement therapy, and epigenetic reactivation, require the detection of its ubiquitin ligase activity. Prior commercial assays leveraged Western Blotting to detect shifts in substrate size due to ubiquitination, but these suffered from long assay times and have also been discontinued. Here we develop a new assay that quantifies UBE3A activity. It measures the fluorescence intensity of ubiquitinated p53 substrates with a microplate reader, eliminating the need for Western Blot antibodies and instruments, and enables detection in just 1 h. The assay is fast, cost-effective, low noise, and uses components with long shelf lives. Importantly, it is also highly sensitive, detecting UBE3A levels as low as 1 nM, similar to that observed in human and mouse cerebrospinal fluid. It also differentiates the activity of wild-type UBE3A and catalytic mutants. We also design a p53 substrate with a triple-epitope tag HIS-HA-CMYC on the N terminus, which allows for versatile detection of UBE3A activity from diverse natural and engineered sources. This new assay provides a timely solution for growing needs in preclinical validation, quality control, endpoint measurements for clinical trials, and downstream manufacturing testing and validation.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"235 ","pages":"Pages 92-99"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000350","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

UBE3A is an E3 ubiquitin ligase associated with several neurodevelopmental disorders. The development of several preclinical therapeutic approaches involving UBE3A, such as gene therapy, enzyme replacement therapy, and epigenetic reactivation, require the detection of its ubiquitin ligase activity. Prior commercial assays leveraged Western Blotting to detect shifts in substrate size due to ubiquitination, but these suffered from long assay times and have also been discontinued. Here we develop a new assay that quantifies UBE3A activity. It measures the fluorescence intensity of ubiquitinated p53 substrates with a microplate reader, eliminating the need for Western Blot antibodies and instruments, and enables detection in just 1 h. The assay is fast, cost-effective, low noise, and uses components with long shelf lives. Importantly, it is also highly sensitive, detecting UBE3A levels as low as 1 nM, similar to that observed in human and mouse cerebrospinal fluid. It also differentiates the activity of wild-type UBE3A and catalytic mutants. We also design a p53 substrate with a triple-epitope tag HIS-HA-CMYC on the N terminus, which allows for versatile detection of UBE3A activity from diverse natural and engineered sources. This new assay provides a timely solution for growing needs in preclinical validation, quality control, endpoint measurements for clinical trials, and downstream manufacturing testing and validation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信