Trimethylamine N-oxide aggravates human aortic valve interstitial cell inflammation by regulating the macrophages polarization through a N6-methyladenosine-mediated pathway

IF 4.9 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Liming Wen , Xiangjie Lin , Dongtu Hu , Juncong Li , Kaiji Xie , Shunyi Li , Shuwen Su , Xiaolin Duan , Guoheng Zhong , Yingwen Lin , Yangchao Chen , Tianyu Xu , Qingchun Zeng
{"title":"Trimethylamine N-oxide aggravates human aortic valve interstitial cell inflammation by regulating the macrophages polarization through a N6-methyladenosine-mediated pathway","authors":"Liming Wen ,&nbsp;Xiangjie Lin ,&nbsp;Dongtu Hu ,&nbsp;Juncong Li ,&nbsp;Kaiji Xie ,&nbsp;Shunyi Li ,&nbsp;Shuwen Su ,&nbsp;Xiaolin Duan ,&nbsp;Guoheng Zhong ,&nbsp;Yingwen Lin ,&nbsp;Yangchao Chen ,&nbsp;Tianyu Xu ,&nbsp;Qingchun Zeng","doi":"10.1016/j.atherosclerosis.2025.119109","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that promotes calcified aortic valve disease (CAVD), but the underlying mechanism remains obscure. Herein, we aim to test the hypothesis that TMAO regulated the inflammatory process in aortic valves via N6-methyladenosine (m6A) RNA methylation-mediated macrophage polarization.</div></div><div><h3>Methods</h3><div><em>In vitro</em>, we stimulated macrophages (Phorbol-12-Myristate-13-Acetate-induced THP-1) with TMAO and assessed the expression of methyltransferase-like 3 (Mettl3), IL-1 receptor associated kinase M (IRAK-M) and polarization markers. The interaction between YTH domain family protein 2 (YTHDF2) and IRAK-M mRNA was explored by RNA-IP and RNA decay assay. Functionally, the effects of macrophages on human aortic valve interstitial cells (AVICs) were measured via macrophage adhesion assay and co-culture system. <em>In vivo,</em> the influence of IRAK-M on CAVD development was verified using <em>Irak-m</em><sup><em>−/−</em></sup> mice.</div></div><div><h3>Result</h3><div>Mettl3 was highly expressed while IRAK-M was decreased in human calcified aortic valves. <em>In vitro</em>, TMAO upregulated the expression of Mettl3, while the expression of IRAK-M, an important negative regulator of the NF-κB pathway, was remarkably decreased in macrophages. TMAO also induced classical macrophage activation (M1 polarization). Mechanistically, IRAK-M was identified as a target of Mettl3-mediated m6A modification, indicating the involvement of m6A methylation in the regulation of NF-κB activation. Moreover, RIP assay revealed the direct interaction between YTHDF2 and IRAK-M mRNA and this process was dependent on Mettl3. TMAO-treated macrophage conditioned medium induced inflammatory responses in human aortic valve interstitial cells (AVICs). <em>In vivo</em> experiments showed that the deletion of IRAK-M significantly accelerated the progression of aortic valve lesion in mice administrated with high-fat and choline diet (HFCD).</div></div><div><h3>Conclusion</h3><div>TMAO induces the expression of Mettl3 in macrophages. Mettl3 promotes M1 polarization of macrophages by inhibiting IRAK-M through a m6A/YTHDF2 pathway. TMAO-treated macrophages aggravate the inflammation of human AVICs.</div></div>","PeriodicalId":8623,"journal":{"name":"Atherosclerosis","volume":"402 ","pages":"Article 119109"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atherosclerosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021915025000061","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that promotes calcified aortic valve disease (CAVD), but the underlying mechanism remains obscure. Herein, we aim to test the hypothesis that TMAO regulated the inflammatory process in aortic valves via N6-methyladenosine (m6A) RNA methylation-mediated macrophage polarization.

Methods

In vitro, we stimulated macrophages (Phorbol-12-Myristate-13-Acetate-induced THP-1) with TMAO and assessed the expression of methyltransferase-like 3 (Mettl3), IL-1 receptor associated kinase M (IRAK-M) and polarization markers. The interaction between YTH domain family protein 2 (YTHDF2) and IRAK-M mRNA was explored by RNA-IP and RNA decay assay. Functionally, the effects of macrophages on human aortic valve interstitial cells (AVICs) were measured via macrophage adhesion assay and co-culture system. In vivo, the influence of IRAK-M on CAVD development was verified using Irak-m−/− mice.

Result

Mettl3 was highly expressed while IRAK-M was decreased in human calcified aortic valves. In vitro, TMAO upregulated the expression of Mettl3, while the expression of IRAK-M, an important negative regulator of the NF-κB pathway, was remarkably decreased in macrophages. TMAO also induced classical macrophage activation (M1 polarization). Mechanistically, IRAK-M was identified as a target of Mettl3-mediated m6A modification, indicating the involvement of m6A methylation in the regulation of NF-κB activation. Moreover, RIP assay revealed the direct interaction between YTHDF2 and IRAK-M mRNA and this process was dependent on Mettl3. TMAO-treated macrophage conditioned medium induced inflammatory responses in human aortic valve interstitial cells (AVICs). In vivo experiments showed that the deletion of IRAK-M significantly accelerated the progression of aortic valve lesion in mice administrated with high-fat and choline diet (HFCD).

Conclusion

TMAO induces the expression of Mettl3 in macrophages. Mettl3 promotes M1 polarization of macrophages by inhibiting IRAK-M through a m6A/YTHDF2 pathway. TMAO-treated macrophages aggravate the inflammation of human AVICs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atherosclerosis
Atherosclerosis 医学-外周血管病
CiteScore
9.80
自引率
3.80%
发文量
1269
审稿时长
36 days
期刊介绍: Atherosclerosis has an open access mirror journal Atherosclerosis: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atherosclerosis brings together, from all sources, papers concerned with investigation on atherosclerosis, its risk factors and clinical manifestations. Atherosclerosis covers basic and translational, clinical and population research approaches to arterial and vascular biology and disease, as well as their risk factors including: disturbances of lipid and lipoprotein metabolism, diabetes and hypertension, thrombosis, and inflammation. The Editors are interested in original or review papers dealing with the pathogenesis, environmental, genetic and epigenetic basis, diagnosis or treatment of atherosclerosis and related diseases as well as their risk factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信