Projected changes in wind speed and wind energy resources over the Persian Gulf based on bias corrected CMIP6 models

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Amirmahdi Gohari , Adem Akpınar
{"title":"Projected changes in wind speed and wind energy resources over the Persian Gulf based on bias corrected CMIP6 models","authors":"Amirmahdi Gohari ,&nbsp;Adem Akpınar","doi":"10.1016/j.dynatmoce.2025.101539","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates future wind speed and wind energy changes in the Persian Gulf using a multi-model ensemble mean (MMM) derived from 20 CMIP6 models under the SSP5–8.5 scenario. ERA5 reanalysis wind speed data for the historical period (1995–2015) is compared to projections for the mid-future (2040–2059) and far-future (2080–2099). Quantile mapping based on Weibull distribution as a bias correction technique applied to the raw future data to obtain more reliable projections. Results show suitable wind conditions for power generation are expected to increase slightly, by 1.16 % in the mid-future and 0.75 % in the far-future. However, average annual wind speed and wind power density are projected to decrease by up to 2 % and 7 % respectively. The winter season is consistently shown to have the highest average wind speed, projected to increase over 5–7 % in the future. Spatial analysis identifies current and future wind energy hot spots, with a northward shift by the far-future. Assessments of variability over time highlight potential future alterations. The future change analysis reveals irregular regional shifts, indicating decreases in wind strength nearshore in the northern Gulf, while the southern part may experience increases, suggesting a promising trend for wind energy potential there.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"110 ","pages":"Article 101539"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026525000144","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates future wind speed and wind energy changes in the Persian Gulf using a multi-model ensemble mean (MMM) derived from 20 CMIP6 models under the SSP5–8.5 scenario. ERA5 reanalysis wind speed data for the historical period (1995–2015) is compared to projections for the mid-future (2040–2059) and far-future (2080–2099). Quantile mapping based on Weibull distribution as a bias correction technique applied to the raw future data to obtain more reliable projections. Results show suitable wind conditions for power generation are expected to increase slightly, by 1.16 % in the mid-future and 0.75 % in the far-future. However, average annual wind speed and wind power density are projected to decrease by up to 2 % and 7 % respectively. The winter season is consistently shown to have the highest average wind speed, projected to increase over 5–7 % in the future. Spatial analysis identifies current and future wind energy hot spots, with a northward shift by the far-future. Assessments of variability over time highlight potential future alterations. The future change analysis reveals irregular regional shifts, indicating decreases in wind strength nearshore in the northern Gulf, while the southern part may experience increases, suggesting a promising trend for wind energy potential there.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信