Design, Synthesis, and Biological Evaluation of Chiral-Proline Derivatives as Novel HSP90 Inhibitors

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL
Chao Zhang, Shuang Cui, Jialin Mu, Kexin Liu, Yuanxun Wang, Hongyu Zhao, Yuguang Mu, Youming Zhang*, Xiaobo Wan* and Chun Song*, 
{"title":"Design, Synthesis, and Biological Evaluation of Chiral-Proline Derivatives as Novel HSP90 Inhibitors","authors":"Chao Zhang,&nbsp;Shuang Cui,&nbsp;Jialin Mu,&nbsp;Kexin Liu,&nbsp;Yuanxun Wang,&nbsp;Hongyu Zhao,&nbsp;Yuguang Mu,&nbsp;Youming Zhang*,&nbsp;Xiaobo Wan* and Chun Song*,&nbsp;","doi":"10.1021/acsmedchemlett.4c0055010.1021/acsmedchemlett.4c00550","DOIUrl":null,"url":null,"abstract":"<p >Heat shock protein 90 (HSP90) is a promising target for oncology therapeutics. Over the past decades, several small molecule inhibitors have demonstrated significant antitumor activity in clinical trials. However, nearly all HSP90 inhibitors in clinical trials have failed due to toxicity or insufficient efficacy. By leveraging crystal structures and current knowledge, we synthesized and evaluated a series of novel derivatives with potent HSP90 inhibitory activity, optimized from resorcinol-based (<i>2R</i>, <i>4R</i>)-4-phenylproline. These derivatives underwent SAR analysis, leading to the discovery of compounds <b>16t</b> and <b>20m</b>, which exhibit strong HSP90 binding affinity and antiproliferative effects against MCF-7, HCT116, SKBr3, K562, and A549 cell lines. Nevertheless, further optimization of derivatives <b>16t</b> and <b>20m</b> was required to enhance their oral bioavailability and isoform selectivity. Our findings provide valuable insights for the ongoing research into selective HSP90α inhibitors and lay a foundation for developing next-generation HSP90α inhibitors and antitumor agents.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 2","pages":"301–310 301–310"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00550","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heat shock protein 90 (HSP90) is a promising target for oncology therapeutics. Over the past decades, several small molecule inhibitors have demonstrated significant antitumor activity in clinical trials. However, nearly all HSP90 inhibitors in clinical trials have failed due to toxicity or insufficient efficacy. By leveraging crystal structures and current knowledge, we synthesized and evaluated a series of novel derivatives with potent HSP90 inhibitory activity, optimized from resorcinol-based (2R, 4R)-4-phenylproline. These derivatives underwent SAR analysis, leading to the discovery of compounds 16t and 20m, which exhibit strong HSP90 binding affinity and antiproliferative effects against MCF-7, HCT116, SKBr3, K562, and A549 cell lines. Nevertheless, further optimization of derivatives 16t and 20m was required to enhance their oral bioavailability and isoform selectivity. Our findings provide valuable insights for the ongoing research into selective HSP90α inhibitors and lay a foundation for developing next-generation HSP90α inhibitors and antitumor agents.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信