Kaixuan Chen, Zexi Zhang, Qianhao Ye, Yixuan Liu, Shantao Han, Mengli Xu, Mao Chen
{"title":"Reversible-deactivation radical copolymerization of tetrafluoroethylene via the formation of divergent termini in dormant chains","authors":"Kaixuan Chen, Zexi Zhang, Qianhao Ye, Yixuan Liu, Shantao Han, Mengli Xu, Mao Chen","doi":"10.1016/j.chempr.2025.102434","DOIUrl":null,"url":null,"abstract":"Tetrafluoroethylene (TFE) is the principal monomer in fluoropolymer industries. However, difficulties in accessing well-defined structures have hampered in-depth investigation into TFE polymers. Here, we reveal the distinctive reactivity of TFE among various fluoroalkenes during the formation of dormant chains and introduce a divergent deactivation strategy for facilitating the reversible generation of different chain-end connections based on a photoorganocatalyzed reversible-deactivation radical copolymerization. This versatile approach enables the controlled synthesis of TFE copolymers with tunable molar masses (up to 211.7 kDa), various comonomer units, and block sequences with sophisticated compositions, shedding light on realizing controlled polymerization for challenging monomers. Furthermore, this synthetic breakthrough lays the groundwork for exploring the characteristics of tailor-made TFE copolymers (e.g., glass transition temperature, electrochemical stability, and viscosity), which should drive the rational design of high-performance materials.","PeriodicalId":268,"journal":{"name":"Chem","volume":"19 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102434","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tetrafluoroethylene (TFE) is the principal monomer in fluoropolymer industries. However, difficulties in accessing well-defined structures have hampered in-depth investigation into TFE polymers. Here, we reveal the distinctive reactivity of TFE among various fluoroalkenes during the formation of dormant chains and introduce a divergent deactivation strategy for facilitating the reversible generation of different chain-end connections based on a photoorganocatalyzed reversible-deactivation radical copolymerization. This versatile approach enables the controlled synthesis of TFE copolymers with tunable molar masses (up to 211.7 kDa), various comonomer units, and block sequences with sophisticated compositions, shedding light on realizing controlled polymerization for challenging monomers. Furthermore, this synthetic breakthrough lays the groundwork for exploring the characteristics of tailor-made TFE copolymers (e.g., glass transition temperature, electrochemical stability, and viscosity), which should drive the rational design of high-performance materials.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.