Synthesis and Mechanistic Insights of Coumarinyl-Indolinone Hybrids as Potent Inhibitors of Leishmania major

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL
Rasha Z. Batran, Manal S. Ebaid, Sherry N. Nasralla, Ninh The Son, Nguyen Xuan Ha, Hoda Atef Abdelsattar Ibrahim, Mahmoud Abdelrahman Alkabbani, Yusuke Kasai, Hiroshi Imagawa, Mohammad M. Al-Sanea, Tamer M. Ibrahim, Abdelsamed I. Elshamy, Adnan A. Bekhit, Wagdy M. Eldehna, Ahmed Sabt
{"title":"Synthesis and Mechanistic Insights of Coumarinyl-Indolinone Hybrids as Potent Inhibitors of Leishmania major","authors":"Rasha Z. Batran, Manal S. Ebaid, Sherry N. Nasralla, Ninh The Son, Nguyen Xuan Ha, Hoda Atef Abdelsattar Ibrahim, Mahmoud Abdelrahman Alkabbani, Yusuke Kasai, Hiroshi Imagawa, Mohammad M. Al-Sanea, Tamer M. Ibrahim, Abdelsamed I. Elshamy, Adnan A. Bekhit, Wagdy M. Eldehna, Ahmed Sabt","doi":"10.1016/j.ejmech.2025.117392","DOIUrl":null,"url":null,"abstract":"Leishmaniasis, recognized as a neglected tropical disease, is a major global health issue that impacts millions of individuals across the globe. The limitations of existing treatments underscore the urgent need for novel antileishmanial drugs. In response, this study synthesized and evaluated fifteen hybrid compounds (<strong>7a-c</strong>, <strong>10a-j</strong>, and <strong>13a-b</strong>) combining 4-hydroxycoumarin and pyrazolyl indolin-2-one motifs for their <em>in vitro</em> antileishmanial efficacy towards <em>Leishmania major</em>. These molecules demonstrated remarkable activity against the promastigote form, with IC<sub>50</sub> values ranging from 1.21 to 7.21 μM, surpassing the reference drug miltefosine (IC<sub>50</sub> = 7.83 μM). Assessment against the intracellular amastigote form revealed efficient inhibitory action (IC<sub>50</sub>: 2.41-9.44 μM vs. 8.07 μM for miltefosine). Compounds <strong>7a</strong> and <strong>7b</strong> exhibited exceptional antileishmanial activity against both forms while maintaining favorable safety profiles. Mechanistic studies indicated that the most effective compounds act through an antifolate mechanism, targeting pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Molecular docking and dynamics simulations of compounds <strong>7a</strong> and <strong>7b</strong> revealed strong in-silico binding and stable dynamics against PTR1, suggesting a high potential for enzyme inhibition. These findings present a promising new class of antileishmanial agents targeting the folate pathway.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"78 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117392","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmaniasis, recognized as a neglected tropical disease, is a major global health issue that impacts millions of individuals across the globe. The limitations of existing treatments underscore the urgent need for novel antileishmanial drugs. In response, this study synthesized and evaluated fifteen hybrid compounds (7a-c, 10a-j, and 13a-b) combining 4-hydroxycoumarin and pyrazolyl indolin-2-one motifs for their in vitro antileishmanial efficacy towards Leishmania major. These molecules demonstrated remarkable activity against the promastigote form, with IC50 values ranging from 1.21 to 7.21 μM, surpassing the reference drug miltefosine (IC50 = 7.83 μM). Assessment against the intracellular amastigote form revealed efficient inhibitory action (IC50: 2.41-9.44 μM vs. 8.07 μM for miltefosine). Compounds 7a and 7b exhibited exceptional antileishmanial activity against both forms while maintaining favorable safety profiles. Mechanistic studies indicated that the most effective compounds act through an antifolate mechanism, targeting pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Molecular docking and dynamics simulations of compounds 7a and 7b revealed strong in-silico binding and stable dynamics against PTR1, suggesting a high potential for enzyme inhibition. These findings present a promising new class of antileishmanial agents targeting the folate pathway.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信