Embryonic BPF exposure induces neurodevelopmental and neurobehavioral toxicity by affecting neural stem cell proliferation in Drosophila

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Binquan Wang , Ziyi Yang , Ke Zhang , Ling Wang , Yuanyuan Song , Qian Li , Mingkuan Sun
{"title":"Embryonic BPF exposure induces neurodevelopmental and neurobehavioral toxicity by affecting neural stem cell proliferation in Drosophila","authors":"Binquan Wang ,&nbsp;Ziyi Yang ,&nbsp;Ke Zhang ,&nbsp;Ling Wang ,&nbsp;Yuanyuan Song ,&nbsp;Qian Li ,&nbsp;Mingkuan Sun","doi":"10.1016/j.envpol.2025.125844","DOIUrl":null,"url":null,"abstract":"<div><div>BPF is a ubiquitous environmental chemical that has been shown to affect neurodevelopmental toxicity from animals to humans. Whether BPF exposure affects neural stem cell proliferation and differentiation is unknown. Here, we utilized a method of permeabilization of <em>Drosophila</em> embryos to analyze the effects of exposure to 0.5 mM, 1 mM, and 2 mM BPF on the proliferation and differentiation of neural stem cells. Our results showed that BPF exposure reduced the number of neuroblasts and intermediate neural progenitors during the embryonic stage, which caused the neuron/glial cell ratio to be out of balance, with a decrease in the number of neurons and an increase in the number of glial cells. BPF exposure caused neurotoxicity by reducing the activities of the antioxidant enzymes CAT and SOD, the downregulation of the transcriptional levels of oxidative stress-related genes, which triggered oxidative damage. As a result, embryonic BPF exposure affected the development of the neuromuscular junctions (NMJs) by reducing the number of axon branches and synaptic buttons, decreasing the number of peristaltic contractions, and reducing larval locomotion. In conclusion, our results demonstrate that embryonic BPF exposure disrupts neural stem cell proliferation, causing neurodevelopmental toxicity and abnormal larval behavior.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"369 ","pages":"Article 125844"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125002179","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

BPF is a ubiquitous environmental chemical that has been shown to affect neurodevelopmental toxicity from animals to humans. Whether BPF exposure affects neural stem cell proliferation and differentiation is unknown. Here, we utilized a method of permeabilization of Drosophila embryos to analyze the effects of exposure to 0.5 mM, 1 mM, and 2 mM BPF on the proliferation and differentiation of neural stem cells. Our results showed that BPF exposure reduced the number of neuroblasts and intermediate neural progenitors during the embryonic stage, which caused the neuron/glial cell ratio to be out of balance, with a decrease in the number of neurons and an increase in the number of glial cells. BPF exposure caused neurotoxicity by reducing the activities of the antioxidant enzymes CAT and SOD, the downregulation of the transcriptional levels of oxidative stress-related genes, which triggered oxidative damage. As a result, embryonic BPF exposure affected the development of the neuromuscular junctions (NMJs) by reducing the number of axon branches and synaptic buttons, decreasing the number of peristaltic contractions, and reducing larval locomotion. In conclusion, our results demonstrate that embryonic BPF exposure disrupts neural stem cell proliferation, causing neurodevelopmental toxicity and abnormal larval behavior.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信