Cheng-Lun Wu, Mohammad Y. Sayyad, Renee E. Sailus, Dibyendu Dey, Jing Xie, Patrick Hays, Jan Kopaczek, Yunbo Ou, Sandhya Susarla, Ivan S. Esqueda, Antia S. Botana and Seth A. Tongay
{"title":"Metallic 2D Janus SNbSe layers driven by a structural phase change†","authors":"Cheng-Lun Wu, Mohammad Y. Sayyad, Renee E. Sailus, Dibyendu Dey, Jing Xie, Patrick Hays, Jan Kopaczek, Yunbo Ou, Sandhya Susarla, Ivan S. Esqueda, Antia S. Botana and Seth A. Tongay","doi":"10.1039/D4NR04059G","DOIUrl":null,"url":null,"abstract":"<p >The discovery of two-dimensional (2D) Janus materials has ignited significant research interest, particularly for their distinct properties diverging from their classical 2D transition metal dichalcogenide (TMD) counterparts. While semiconducting 2D Janus TMDs have been demonstrated, examples of metallic Janus layers are still rather limited. Here, we address this gap by experimentally synthesizing and characterizing metallic Janus layers, focusing on SNbSe and SeNbS, derived from monolayer NbS<small><sub>2</sub></small> and NbSe<small><sub>2</sub></small> using a plasma-assisted technique. Our results show that Nb-based 2D Janus layers form after 1H-to-1T phase transition, marking a phase transition-induced formation of Janus layers. Our comprehensive spectroscopy and microscopy studies, including <em>Z</em>-contrast high angle annular dark field scanning transmission electron microscopy, reveal the phononic and structural properties during Janus SeNbS formation and establish their energetic stability. Density functional theory (DFT) simulations provide insights into the phononic and electronic properties of these materials, shedding light on their potential for diverse applications. Overall, our results demonstrate the realization of niobium-based Janus metals and expand the library of metallic Janus layers.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 13","pages":" 7801-7812"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04059g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of two-dimensional (2D) Janus materials has ignited significant research interest, particularly for their distinct properties diverging from their classical 2D transition metal dichalcogenide (TMD) counterparts. While semiconducting 2D Janus TMDs have been demonstrated, examples of metallic Janus layers are still rather limited. Here, we address this gap by experimentally synthesizing and characterizing metallic Janus layers, focusing on SNbSe and SeNbS, derived from monolayer NbS2 and NbSe2 using a plasma-assisted technique. Our results show that Nb-based 2D Janus layers form after 1H-to-1T phase transition, marking a phase transition-induced formation of Janus layers. Our comprehensive spectroscopy and microscopy studies, including Z-contrast high angle annular dark field scanning transmission electron microscopy, reveal the phononic and structural properties during Janus SeNbS formation and establish their energetic stability. Density functional theory (DFT) simulations provide insights into the phononic and electronic properties of these materials, shedding light on their potential for diverse applications. Overall, our results demonstrate the realization of niobium-based Janus metals and expand the library of metallic Janus layers.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.