Piezoresistive Platinum Diselenide Pressure Sensors with Reliable High Sensitivity and Their Integration into Complementary Metal-Oxide-Semiconductor Circuits

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-12 DOI:10.1021/acsnano.4c15098
Sebastian Lukas, Nico Rademacher, Sofía Cruces, Michael Gross, Eva Desgué, Stefan Heiserer, Nikolas Dominik, Maximilian Prechtl, Oliver Hartwig, Cormac Ó Coileáin, Tanja Stimpel-Lindner, Pierre Legagneux, Arto Rantala, Juha-Matti Saari, Miika Soikkeli, Georg S. Duesberg, Max C. Lemme
{"title":"Piezoresistive Platinum Diselenide Pressure Sensors with Reliable High Sensitivity and Their Integration into Complementary Metal-Oxide-Semiconductor Circuits","authors":"Sebastian Lukas, Nico Rademacher, Sofía Cruces, Michael Gross, Eva Desgué, Stefan Heiserer, Nikolas Dominik, Maximilian Prechtl, Oliver Hartwig, Cormac Ó Coileáin, Tanja Stimpel-Lindner, Pierre Legagneux, Arto Rantala, Juha-Matti Saari, Miika Soikkeli, Georg S. Duesberg, Max C. Lemme","doi":"10.1021/acsnano.4c15098","DOIUrl":null,"url":null,"abstract":"Membrane-based sensors are an important market for microelectromechanical systems (MEMS). Two-dimensional (2D) materials, with their low mass, are excellent candidates for suspended membranes to provide high sensitivity, small footprint sensors. The present work demonstrates pressure sensors employing large-scale-synthesized 2D platinum diselenide (PtSe<sub>2</sub>) films as piezoresistive membranes supported only by a thin polymer layer. We investigate three different synthesis methods with contrasting growth parameters and establish a reliable high yield fabrication process for suspended PtSe<sub>2</sub>/PMMA membranes across sealed cavities. The pressure sensors reproducibly display sensitivities above 6 × 10<sup>–4</sup> kPa<sup>–1</sup>. We show that the sensitivity clearly depends on the membrane diameter and the piezoresistive gauge factor of the PtSe<sub>2</sub> film. Reducing the total device size by decreasing the number of membranes within a device leads to a significant increase in the area-normalized sensitivity. This allows the manufacturing of pressure sensors with high sensitivity but a much smaller device footprint than the current state-of-the-art MEMS technology. We further integrate PtSe<sub>2</sub> pressure sensors with CMOS technology, improving the technological readiness of PtSe<sub>2</sub>-based MEMS and NEMS devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"41 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15098","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-based sensors are an important market for microelectromechanical systems (MEMS). Two-dimensional (2D) materials, with their low mass, are excellent candidates for suspended membranes to provide high sensitivity, small footprint sensors. The present work demonstrates pressure sensors employing large-scale-synthesized 2D platinum diselenide (PtSe2) films as piezoresistive membranes supported only by a thin polymer layer. We investigate three different synthesis methods with contrasting growth parameters and establish a reliable high yield fabrication process for suspended PtSe2/PMMA membranes across sealed cavities. The pressure sensors reproducibly display sensitivities above 6 × 10–4 kPa–1. We show that the sensitivity clearly depends on the membrane diameter and the piezoresistive gauge factor of the PtSe2 film. Reducing the total device size by decreasing the number of membranes within a device leads to a significant increase in the area-normalized sensitivity. This allows the manufacturing of pressure sensors with high sensitivity but a much smaller device footprint than the current state-of-the-art MEMS technology. We further integrate PtSe2 pressure sensors with CMOS technology, improving the technological readiness of PtSe2-based MEMS and NEMS devices.

Abstract Image

可靠的高灵敏度压阻式二硒化铂压力传感器及其在互补金属-氧化物-半导体电路中的集成
薄膜传感器是微机电系统(MEMS)的重要市场。二维(2D)材料具有低质量,是悬浮膜的优秀候选者,可以提供高灵敏度、小占地的传感器。目前的工作展示了压力传感器采用大规模合成的二维二硒化铂(PtSe2)薄膜作为压阻膜,仅由薄聚合物层支撑。我们研究了三种不同的合成方法和不同的生长参数,并建立了一种可靠的高产量的制备方法,用于密封腔悬浮PtSe2/PMMA膜。压力传感器可重复显示6 × 10-4 kPa-1以上的灵敏度。我们表明,灵敏度明显取决于膜直径和PtSe2薄膜的压阻测量因子。通过减少装置内膜的数量来减小装置的总尺寸,可以显著增加面积归一化灵敏度。这使得制造具有高灵敏度的压力传感器成为可能,但与目前最先进的MEMS技术相比,其设备占地面积要小得多。我们进一步将PtSe2压力传感器与CMOS技术集成,提高了基于PtSe2的MEMS和NEMS器件的技术成熟度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信