{"title":"Chiral Blue TADF Materials Enhance the Spin Transitions to Improve Emission Quantum Yield","authors":"Xi Wang, Xiangqian Lu, Renjie Hu, Wei Qin","doi":"10.1021/acs.nanolett.4c06632","DOIUrl":null,"url":null,"abstract":"Circularly polarized thermally activated delayed fluorescence materials not only possess high exciton utilization efficiency but also have the capability to emit circularly polarized light for potential information storage and sensing. In this work, chiral blue TADF enantiomers are prepared. The energy difference between singlet and triplet, Δ<i>E</i><sub>ST</sub>, increases with the strength of chirality. The chiral orbit-induced spin degeneracy elimination could enhance spin relaxation, where spin could flip easily to lead to an effective transition from triplet to singlet states. This induces a pronounced enhancement in fluorescence quantum yield. Furthermore, circularly polarized emission of chiral TADF materials under different external magnetic fields are studied. Magnetic field control of <i>g</i><sub>lum</sub> presents a mirror symmetry effect for chiral TADF enantiomers, which provides evidence for the transition between the photon spin and electron spin.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"63 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06632","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Circularly polarized thermally activated delayed fluorescence materials not only possess high exciton utilization efficiency but also have the capability to emit circularly polarized light for potential information storage and sensing. In this work, chiral blue TADF enantiomers are prepared. The energy difference between singlet and triplet, ΔEST, increases with the strength of chirality. The chiral orbit-induced spin degeneracy elimination could enhance spin relaxation, where spin could flip easily to lead to an effective transition from triplet to singlet states. This induces a pronounced enhancement in fluorescence quantum yield. Furthermore, circularly polarized emission of chiral TADF materials under different external magnetic fields are studied. Magnetic field control of glum presents a mirror symmetry effect for chiral TADF enantiomers, which provides evidence for the transition between the photon spin and electron spin.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.