Shang Chi , Yaping Li , Tingting Ye , Jiawei Kang , Zhihui Xiang , Xiaoqing Kuang , Chenggang Yi , Yiying Qi , Wei Wang
{"title":"Energy reconversion of ultrasound on a piezoelectric hydrogel promotes ROS/CO generation and wound self-closure for infected chronic wound healing","authors":"Shang Chi , Yaping Li , Tingting Ye , Jiawei Kang , Zhihui Xiang , Xiaoqing Kuang , Chenggang Yi , Yiying Qi , Wei Wang","doi":"10.1016/j.matt.2025.101989","DOIUrl":null,"url":null,"abstract":"<div><div>This work developed a <em>de novo</em> sonosensitizer based on carnosine_zinc piezoelectric metal-organic frameworks (PMOFs) that possesses a prominent reactive oxygen species (ROS)-generating function, biocompatibility, and degradability. Further, the PMOF was modified by a carbon monoxide (CO) donor through a metal complexation reaction to result in a multifunctional CO-PMOF to launch CO/ROS-mediated antimicrobial under ultrasound (US). However, the heat generated during sonodynamic therapy (SDT) may harm wounds. To minimize the waste energy and promote wound self-closure rate, a strong adhesive, and rapid thermal-responsive contraction (52.4%, 4 min), injectable hydrogel was designed to load CO-PMOF. The resulting ultrasonic triple-responsive hydrogel (UTGel) exhibits an effective biofilm destruction capability based on a CO/ROS-mediated antimicrobial therapy. After administration in an infected diabetic skin wound model in mice, UTGel can efficiently harvest the thermal energy by the CO-PMOF under US to trigger a centripetal shrinkage of the hydrogel and guide rapid wound self-closure.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 3","pages":"Article 101989"},"PeriodicalIF":17.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525000323","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work developed a de novo sonosensitizer based on carnosine_zinc piezoelectric metal-organic frameworks (PMOFs) that possesses a prominent reactive oxygen species (ROS)-generating function, biocompatibility, and degradability. Further, the PMOF was modified by a carbon monoxide (CO) donor through a metal complexation reaction to result in a multifunctional CO-PMOF to launch CO/ROS-mediated antimicrobial under ultrasound (US). However, the heat generated during sonodynamic therapy (SDT) may harm wounds. To minimize the waste energy and promote wound self-closure rate, a strong adhesive, and rapid thermal-responsive contraction (52.4%, 4 min), injectable hydrogel was designed to load CO-PMOF. The resulting ultrasonic triple-responsive hydrogel (UTGel) exhibits an effective biofilm destruction capability based on a CO/ROS-mediated antimicrobial therapy. After administration in an infected diabetic skin wound model in mice, UTGel can efficiently harvest the thermal energy by the CO-PMOF under US to trigger a centripetal shrinkage of the hydrogel and guide rapid wound self-closure.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.