Nebojša Ilić, Kui Tan, Felix Mayr, Shujin Hou, Benedikt M. Aumeier, Eder Moisés Cedeño Morales, Uwe Hübner, Jennifer Cookman, Andreas Schneemann, Alessio Gagliardi, Jörg E. Drewes, Roland A. Fischer, Soumya Mukherjee
{"title":"Trace Adsorptive Removal of PFAS from Water by Optimizing the UiO-66 MOF Interface (Adv. Mater. 6/2025)","authors":"Nebojša Ilić, Kui Tan, Felix Mayr, Shujin Hou, Benedikt M. Aumeier, Eder Moisés Cedeño Morales, Uwe Hübner, Jennifer Cookman, Andreas Schneemann, Alessio Gagliardi, Jörg E. Drewes, Roland A. Fischer, Soumya Mukherjee","doi":"10.1002/adma.202570048","DOIUrl":null,"url":null,"abstract":"<p><b>Trace Adsorptive Removal of PFAS</b></p><p>By tuning the interfacial chemistry of water-stable metal-organic frameworks (MOFs) and polymer-MOF hybrids, sorbent filters were developed for rapid, recyclable, and efficient PFAS removal, even at concentrations as low as two parts per billion. More details can be found in article number 2413120 by Jörg E. Drewes, Roland A. Fischer, Soumya Mukherjee, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 6","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202570048","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202570048","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Trace Adsorptive Removal of PFAS
By tuning the interfacial chemistry of water-stable metal-organic frameworks (MOFs) and polymer-MOF hybrids, sorbent filters were developed for rapid, recyclable, and efficient PFAS removal, even at concentrations as low as two parts per billion. More details can be found in article number 2413120 by Jörg E. Drewes, Roland A. Fischer, Soumya Mukherjee, and co-workers.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.