Activate Reconstruction from Sb3+/Ho3+ Synergistic Doping Nanofibers for Interactive Information Encryption and Customized Display

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Xiaolong Dong, Xin Zhao, Yuhang Zhang, Maosen Hu, Lifan Shen, Edwin Yue Bun Pun, Hai Lin
{"title":"Activate Reconstruction from Sb3+/Ho3+ Synergistic Doping Nanofibers for Interactive Information Encryption and Customized Display","authors":"Xiaolong Dong, Xin Zhao, Yuhang Zhang, Maosen Hu, Lifan Shen, Edwin Yue Bun Pun, Hai Lin","doi":"10.1002/lpor.202402120","DOIUrl":null,"url":null,"abstract":"Driven by the escalating demand for cutting-edge materials in interactive encryption and customized display, the optimization of excitonic coupling mechanisms in perovskite-based luminescent systems has emerged as a pivotal focus in advanced materials research. Inspired by synergistic doping (SD), a photoswitchable energy transfer channel is realized utilizing the UV-responsive Cs<sub>2</sub>NaInCl<sub>6</sub>: Sb<sup>3+</sup>-Ho<sup>3+</sup> (CNIC: Sb-Ho) phosphor. Benefiting from the self-trapped exciton of Sb<sup>3+</sup>, the visible blue luminescence of Ho<sup>3+</sup> achieves excitation reconstruction through SD, with a sensitization coefficient from Sb<sup>3+</sup> to Ho<sup>3+</sup> in CNIC reaching two orders of magnitude. Notably, CNIC: Sb-Ho quantum dot is embedded into polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) fibers, respectively, and distinct color coordinate channels are created by altering the doping concentration and fiber matrix, thereby enabling the personalization and the customization of the desired colors with enhanced precision. Furthermore, excellent read-in performance under UV irradiation is achieved by screen-printing CNIC: Sb-Ho microcrystal on nanofibers and combining it with ACSII code, which endows nanofibers with UV-induced controllable shape programming behavior for interactive multidimensional information encryption. This work establishes an enhanced visual interaction framework through effectively integrating perovskite fluorescence tunability and nanofiber adaptive structures, thus opening new possibilities for the smart application of next-generation optical encryption technology.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"7 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402120","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by the escalating demand for cutting-edge materials in interactive encryption and customized display, the optimization of excitonic coupling mechanisms in perovskite-based luminescent systems has emerged as a pivotal focus in advanced materials research. Inspired by synergistic doping (SD), a photoswitchable energy transfer channel is realized utilizing the UV-responsive Cs2NaInCl6: Sb3+-Ho3+ (CNIC: Sb-Ho) phosphor. Benefiting from the self-trapped exciton of Sb3+, the visible blue luminescence of Ho3+ achieves excitation reconstruction through SD, with a sensitization coefficient from Sb3+ to Ho3+ in CNIC reaching two orders of magnitude. Notably, CNIC: Sb-Ho quantum dot is embedded into polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) fibers, respectively, and distinct color coordinate channels are created by altering the doping concentration and fiber matrix, thereby enabling the personalization and the customization of the desired colors with enhanced precision. Furthermore, excellent read-in performance under UV irradiation is achieved by screen-printing CNIC: Sb-Ho microcrystal on nanofibers and combining it with ACSII code, which endows nanofibers with UV-induced controllable shape programming behavior for interactive multidimensional information encryption. This work establishes an enhanced visual interaction framework through effectively integrating perovskite fluorescence tunability and nanofiber adaptive structures, thus opening new possibilities for the smart application of next-generation optical encryption technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信