Intercellular NETwork-facilitated sarcoplasmic reticulum targeting for myocardial ischemia-reperfusion injury treatment

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Peihang Jiang, Fangyang Huang, Liqiang Chen, Hao Zhou, Yudi Deng, Lian Li, Mao Chen, Yuan Huang
{"title":"Intercellular NETwork-facilitated sarcoplasmic reticulum targeting for myocardial ischemia-reperfusion injury treatment","authors":"Peihang Jiang, Fangyang Huang, Liqiang Chen, Hao Zhou, Yudi Deng, Lian Li, Mao Chen, Yuan Huang","doi":"10.1126/sciadv.adr4333","DOIUrl":null,"url":null,"abstract":"Myocardial ischemia-reperfusion injury (MIRI) often leads to irreversible myocardium dysfunction, while existing therapies are palliatives that transiently alleviate the disease symptoms. Repairing sarcoplasmic reticulum Ca <jats:sup>2+</jats:sup> -ATPase (SERCA) could reverse MIRI, which, however, requires precise drug delivery to the sarcoplasmic reticulum (SR). To this end, we leverage cell-cell “NETwork” of neutrophils to deliver SERCA activator-loaded SR-localized nanoparticles (L-P-NPs) to the damaged myocardial cells, following a hierarchical targeting process: (i) chemotactic neutrophils deliver L-P-NPs to ischemia-reperfused heart, achieving tissue level targeting; (ii) neutrophils produce neutrophil extracellular traps (NETs) to transport L-P-NPs to injured myocardial cell, achieving cellular level targeting; (iii) L-P-NPs escort therapeutic payloads to the SR, achieving subcellular targeting. We showed that this platform profoundly restored SERCA activity, augmented cardiac function, and ameliorated adverse heart remodeling. Our study provides insight into the direct restoration of SR for the effective treatment of MIRI and other muscle diseases.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"41 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr4333","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial ischemia-reperfusion injury (MIRI) often leads to irreversible myocardium dysfunction, while existing therapies are palliatives that transiently alleviate the disease symptoms. Repairing sarcoplasmic reticulum Ca 2+ -ATPase (SERCA) could reverse MIRI, which, however, requires precise drug delivery to the sarcoplasmic reticulum (SR). To this end, we leverage cell-cell “NETwork” of neutrophils to deliver SERCA activator-loaded SR-localized nanoparticles (L-P-NPs) to the damaged myocardial cells, following a hierarchical targeting process: (i) chemotactic neutrophils deliver L-P-NPs to ischemia-reperfused heart, achieving tissue level targeting; (ii) neutrophils produce neutrophil extracellular traps (NETs) to transport L-P-NPs to injured myocardial cell, achieving cellular level targeting; (iii) L-P-NPs escort therapeutic payloads to the SR, achieving subcellular targeting. We showed that this platform profoundly restored SERCA activity, augmented cardiac function, and ameliorated adverse heart remodeling. Our study provides insight into the direct restoration of SR for the effective treatment of MIRI and other muscle diseases.
细胞间网络促进肌质网靶向治疗心肌缺血再灌注损伤
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信