Laboratory observation of ion drift acceleration via reflection off laser-produced magnetized collisionless shocks

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hui-bo Tang, Yu-fei Hao, Guang-yue Hu, Quan-ming Lu, Chuang Ren, Yu Zhang, Ao Guo, Peng Hu, Yu-lin Wang, Xiang-bing Wang, Zhen-chi Zhang, Peng Yuan, Wei Liu, Hua-chong Si, Chun-kai Yu, Jia-yi Zhao, Jin-can Wang, Zhe Zhang, Xiao-hui Yuan, Da-wei Yuan, Zhi-yong Xie, Jun Xiong, Zhi-heng Fang, Jian-cai Xu, Jing-Jing Ju, Guo-qiang Zhang, Jian-Qiang Zhu, Ru-xin Li, Zhi-zhan Xu
{"title":"Laboratory observation of ion drift acceleration via reflection off laser-produced magnetized collisionless shocks","authors":"Hui-bo Tang, Yu-fei Hao, Guang-yue Hu, Quan-ming Lu, Chuang Ren, Yu Zhang, Ao Guo, Peng Hu, Yu-lin Wang, Xiang-bing Wang, Zhen-chi Zhang, Peng Yuan, Wei Liu, Hua-chong Si, Chun-kai Yu, Jia-yi Zhao, Jin-can Wang, Zhe Zhang, Xiao-hui Yuan, Da-wei Yuan, Zhi-yong Xie, Jun Xiong, Zhi-heng Fang, Jian-cai Xu, Jing-Jing Ju, Guo-qiang Zhang, Jian-Qiang Zhu, Ru-xin Li, Zhi-zhan Xu","doi":"10.1126/sciadv.adn3320","DOIUrl":null,"url":null,"abstract":"Fermi acceleration is believed to be the primary mechanism to produce high-energy charged particles in the Universe, where charged particles gain energy successively from multiple reflections. Here, we present the direct laboratory experimental evidence of ion energization from single reflection off a supercritical collisionless shock, an essential component of Fermi acceleration, in a laser-produced magnetized plasma. A quasi-monoenergetic ion beam with two to four times the shock velocity was observed, which is consistent with the fast ion component observed in the Earth’s bow shock. Our simulations reproduced the energy gain and showed that ions were accelerated mainly by the motional electric field during reflection. The results identify shock drift acceleration as the dominant ion energization mechanism, which is consistent with satellite observation in the Earth’s bow shock. Our observations pave the way for laboratory investigations of the cosmic accelerators, also be beneficial to laser fusion and laser-driven ion accelerator.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"21 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adn3320","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fermi acceleration is believed to be the primary mechanism to produce high-energy charged particles in the Universe, where charged particles gain energy successively from multiple reflections. Here, we present the direct laboratory experimental evidence of ion energization from single reflection off a supercritical collisionless shock, an essential component of Fermi acceleration, in a laser-produced magnetized plasma. A quasi-monoenergetic ion beam with two to four times the shock velocity was observed, which is consistent with the fast ion component observed in the Earth’s bow shock. Our simulations reproduced the energy gain and showed that ions were accelerated mainly by the motional electric field during reflection. The results identify shock drift acceleration as the dominant ion energization mechanism, which is consistent with satellite observation in the Earth’s bow shock. Our observations pave the way for laboratory investigations of the cosmic accelerators, also be beneficial to laser fusion and laser-driven ion accelerator.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信