Rectification effect: A universal strategy for single-atom electrocatalysts to enhance oxygen reduction reaction

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zheng Li, Qiyou Wang, Hao Cheng, Mengran Wang, Shiwei Hu, Guanjie He, Zhongliang Tian
{"title":"Rectification effect: A universal strategy for single-atom electrocatalysts to enhance oxygen reduction reaction","authors":"Zheng Li, Qiyou Wang, Hao Cheng, Mengran Wang, Shiwei Hu, Guanjie He, Zhongliang Tian","doi":"10.1016/j.ensm.2025.104121","DOIUrl":null,"url":null,"abstract":"The M-N<sub>x</sub> single-atom catalysts (SACs) are critical for efficient energy conversion technologies. However, most SACs with M-N<sub>x</sub> moiety (M: Fe, Co, or/and Mn) suffer the strong binding ability with OH* intermediates in oxygen reduction reaction (ORR), which becomes a bottleneck in accelerating the kinetics. Herein, a universal “rectification effect” strategy is proposed by constructing a <em>p</em>-<em>n</em> junction, where an <em>n</em>-type ZnS semiconductor longitudinally bridges with <em>p</em>-type M-N<sub>x</sub> moiety to weaken the interaction of M-N<sub>x</sub> with OH*. As expected, the <em>a</em>-ZnS/Fe-NSC electrocatalyst exhibits remarkable intrinsic activity in alkaline media with a half-wave potential of 0.90 V vs. RHE, and long-term durability (a shift of only 10 mV in E<sub>1/2</sub> after 8,000 cycles). This phenomenon can be ascribed to the optimization of electronic structure, the S-MN<sub>4</sub> site can effectively activate the M centre with the intermediate spin state which possesses one e<sub>g</sub> electron (t<sub>2g</sub>4 e<sub>g</sub>1) readily penetrating the antibonding π-orbital of oxygen. Moreover, it offers a superior power density and higher discharge voltage in Al-air batteries. This universal strategy provides a rational perspective for the design of SACs and electronic structure engineering to construct robust active sites for high-performance oxygen reduction.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"50 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104121","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The M-Nx single-atom catalysts (SACs) are critical for efficient energy conversion technologies. However, most SACs with M-Nx moiety (M: Fe, Co, or/and Mn) suffer the strong binding ability with OH* intermediates in oxygen reduction reaction (ORR), which becomes a bottleneck in accelerating the kinetics. Herein, a universal “rectification effect” strategy is proposed by constructing a p-n junction, where an n-type ZnS semiconductor longitudinally bridges with p-type M-Nx moiety to weaken the interaction of M-Nx with OH*. As expected, the a-ZnS/Fe-NSC electrocatalyst exhibits remarkable intrinsic activity in alkaline media with a half-wave potential of 0.90 V vs. RHE, and long-term durability (a shift of only 10 mV in E1/2 after 8,000 cycles). This phenomenon can be ascribed to the optimization of electronic structure, the S-MN4 site can effectively activate the M centre with the intermediate spin state which possesses one eg electron (t2g4 eg1) readily penetrating the antibonding π-orbital of oxygen. Moreover, it offers a superior power density and higher discharge voltage in Al-air batteries. This universal strategy provides a rational perspective for the design of SACs and electronic structure engineering to construct robust active sites for high-performance oxygen reduction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信