Engineered Extracellular Vesicles Derived from Pluripotent Stem Cells: A Cell-Free Approach to Regenerative Medicine

IF 6.3 1区 医学 Q1 DERMATOLOGY
Aline Yen Ling Wang, Huang-Kai Kao, Yen-Yu Liu, Charles Yuen Yung Loh
{"title":"Engineered Extracellular Vesicles Derived from Pluripotent Stem Cells: A Cell-Free Approach to Regenerative Medicine","authors":"Aline Yen Ling Wang, Huang-Kai Kao, Yen-Yu Liu, Charles Yuen Yung Loh","doi":"10.1093/burnst/tkaf013","DOIUrl":null,"url":null,"abstract":"The engineered extracellular vesicles (EVs) derived from pluripotent stem cells are a new concept in regenerative medicine. These vesicles are secreted from the embryonic stem cells as well as the induced pluripotent stem cells (iPSCs) and are involved in the transfer of bioactive molecules required for cell signaling. This review describes the possibilities for their use in the modification of therapeutic approaches in regenerative medicine and targeted therapies. Pluripotent stem cells can differentiate into various cell types which can be useful for tissue engineering or to generate models of diseases in a dish. Compared to cell therapies, engineered EVs are characterized by lower immunogenicity, higher targetability, and improved stability. Some of the applications are angiogenic, tissue restorative, immunomodulatory, and gene therapies for the treatment of certain diseases. iPSC-derived engineered EVs find application in regenerative medicine, drug delivery systems, diagnostics of diseases, and hydrogel systems. In regenerative medicine, they can promote the restoration of cardiac, bone, cartilage, and corneal tissues. Engineered EVs are also employed in drug targeting to particular sites as well as in the diagnosis of diseases based on biomarkers and improving image contrast. Hydrogels that contain EVs provide a depot-based delivery system to slowly release drugs in a controlled manner which enhances tissue repair. Thus, the results described above demonstrate the potential of engineered PSC-EVs for various biomedical applications. Future work will be directed toward expanding the knowledge of engineered PSC-EVs and their possibilities to create new therapeutic approaches based on the functions of these vesicles.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"15 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkaf013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The engineered extracellular vesicles (EVs) derived from pluripotent stem cells are a new concept in regenerative medicine. These vesicles are secreted from the embryonic stem cells as well as the induced pluripotent stem cells (iPSCs) and are involved in the transfer of bioactive molecules required for cell signaling. This review describes the possibilities for their use in the modification of therapeutic approaches in regenerative medicine and targeted therapies. Pluripotent stem cells can differentiate into various cell types which can be useful for tissue engineering or to generate models of diseases in a dish. Compared to cell therapies, engineered EVs are characterized by lower immunogenicity, higher targetability, and improved stability. Some of the applications are angiogenic, tissue restorative, immunomodulatory, and gene therapies for the treatment of certain diseases. iPSC-derived engineered EVs find application in regenerative medicine, drug delivery systems, diagnostics of diseases, and hydrogel systems. In regenerative medicine, they can promote the restoration of cardiac, bone, cartilage, and corneal tissues. Engineered EVs are also employed in drug targeting to particular sites as well as in the diagnosis of diseases based on biomarkers and improving image contrast. Hydrogels that contain EVs provide a depot-based delivery system to slowly release drugs in a controlled manner which enhances tissue repair. Thus, the results described above demonstrate the potential of engineered PSC-EVs for various biomedical applications. Future work will be directed toward expanding the knowledge of engineered PSC-EVs and their possibilities to create new therapeutic approaches based on the functions of these vesicles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信