Sustainable Synthesis of MCM-22 Zeolite as a Catalytic Platform for Propane Dehydrogenation

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Xiaotao Yu, Yuxuan Chen, Min Guo, Song Lu, Jiadi Ying, Tiancun Liu, Qi Shen, Yeqing Wang, Zhixin Yu
{"title":"Sustainable Synthesis of MCM-22 Zeolite as a Catalytic Platform for Propane Dehydrogenation","authors":"Xiaotao Yu, Yuxuan Chen, Min Guo, Song Lu, Jiadi Ying, Tiancun Liu, Qi Shen, Yeqing Wang, Zhixin Yu","doi":"10.1021/acs.inorgchem.4c04630","DOIUrl":null,"url":null,"abstract":"The significant volume of solvent required for the hydrothermal synthesis of zeolites remains the primary hurdle impeding industrial applications. With the benefits of reduced manufacturing costs, safety, and energy savings, reducing the use of solvents is one of the significant sought-after objectives. In this study, borosilicate zeolite B-MCM-22 is successfully obtained using a solvent-free synthesis method. The as-synthesized sample exhibits good long-range order, high crystallinity, and high silica utilization (ca. 95%). Furthermore, the B-MCM-22 precursor serves as a platform for introducing Co active sites via deboronization and impregnation processes. The resulting Co-MCM-22-DB catalyst provides a propylene selectivity of &gt;90% with an initial propane conversion of 38% in the propane dehydrogenation reaction and shows a higher initial catalytic performance than the Co/ITQ-1 catalyst. The essential interplay between the metal–support interaction and catalytic performance is demonstrated by ultraviolet–visible (UV–vis), H<sub>2</sub>-TPR, and catalytic assessments, further elucidating that Co<sup>2+</sup> species are the active sites for propane to propylene conversion. We anticipate that B-MCM-22 will be a versatile and ideal platform for catalyst design through structural manipulation.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"78 5 Pt 1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04630","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The significant volume of solvent required for the hydrothermal synthesis of zeolites remains the primary hurdle impeding industrial applications. With the benefits of reduced manufacturing costs, safety, and energy savings, reducing the use of solvents is one of the significant sought-after objectives. In this study, borosilicate zeolite B-MCM-22 is successfully obtained using a solvent-free synthesis method. The as-synthesized sample exhibits good long-range order, high crystallinity, and high silica utilization (ca. 95%). Furthermore, the B-MCM-22 precursor serves as a platform for introducing Co active sites via deboronization and impregnation processes. The resulting Co-MCM-22-DB catalyst provides a propylene selectivity of >90% with an initial propane conversion of 38% in the propane dehydrogenation reaction and shows a higher initial catalytic performance than the Co/ITQ-1 catalyst. The essential interplay between the metal–support interaction and catalytic performance is demonstrated by ultraviolet–visible (UV–vis), H2-TPR, and catalytic assessments, further elucidating that Co2+ species are the active sites for propane to propylene conversion. We anticipate that B-MCM-22 will be a versatile and ideal platform for catalyst design through structural manipulation.

Abstract Image

可持续合成 MCM-22 沸石作为丙烷脱氢的催化平台
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信