Nanoplastic and phthalate induced stress responses in rhizosphere soil: Microbial communities and metabolic networks

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xingfan Li , Xinyi Du , Davey L. Jones , Zhiqiang He , Jia Liu , Xiaorui Guo , Zhonghua Tang
{"title":"Nanoplastic and phthalate induced stress responses in rhizosphere soil: Microbial communities and metabolic networks","authors":"Xingfan Li ,&nbsp;Xinyi Du ,&nbsp;Davey L. Jones ,&nbsp;Zhiqiang He ,&nbsp;Jia Liu ,&nbsp;Xiaorui Guo ,&nbsp;Zhonghua Tang","doi":"10.1016/j.jhazmat.2025.137591","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread use of plastic products in agriculture has introduced micro-nano plastics (MNPs) and dibutyl phthalate (DBP) into soil ecosystems, disrupting microbial communities and altering metabolite profiles. However, their effects on the rhizosphere soil characteristics of medicinal plants like dandelion remain understudied. This study systematically examined the impact of PS NPs and DBP on rhizosphere microbial communities and metabolites by integrating high-throughput sequencing with liquid chromatography-mass spectrometry. Results demonstrated that individual and combined exposures to PS NPs and DBP decreased soil pH, organic matter content, and enzyme activities while reshaping the diversity, structure, and composition of rhizosphere bacteria and fungi. Notably, bacterial network stability and complexity increased under combined exposure, while fungal networks became more simplified, with a 33.72 % decrease in positive correlations. We identified potential PS NPs and DBP-degrading bacteria and biomarkers, including <em>Nocardioides</em>, <em>Pseudarthrobacter</em>, and <em>Arenimonas</em>. We revealed that co-exposure elevated differential soil metabolites associated with tyrosine metabolism and steroid biosynthesis. The significant positive associations between rhizosphere microorganisms and metabolites highlighted that metabolite accumulation was a key microbial response mechanism to stress. However, within the complex soil environment, the compensatory actions of microorganisms and metabolites were insufficient to mitigate the detrimental effects of PS NPs and DBP, resulting in continued inhibition of dandelion growth by 38.66 %. Consequently, these findings highlight that soil fungi and metabolism play key roles in responding to stress and influencing crop growth, providing novel insights into the impact of nanoparticle and plasticizer exposure on medicinal plant cultivation.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"489 ","pages":"Article 137591"},"PeriodicalIF":12.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425005059","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of plastic products in agriculture has introduced micro-nano plastics (MNPs) and dibutyl phthalate (DBP) into soil ecosystems, disrupting microbial communities and altering metabolite profiles. However, their effects on the rhizosphere soil characteristics of medicinal plants like dandelion remain understudied. This study systematically examined the impact of PS NPs and DBP on rhizosphere microbial communities and metabolites by integrating high-throughput sequencing with liquid chromatography-mass spectrometry. Results demonstrated that individual and combined exposures to PS NPs and DBP decreased soil pH, organic matter content, and enzyme activities while reshaping the diversity, structure, and composition of rhizosphere bacteria and fungi. Notably, bacterial network stability and complexity increased under combined exposure, while fungal networks became more simplified, with a 33.72 % decrease in positive correlations. We identified potential PS NPs and DBP-degrading bacteria and biomarkers, including Nocardioides, Pseudarthrobacter, and Arenimonas. We revealed that co-exposure elevated differential soil metabolites associated with tyrosine metabolism and steroid biosynthesis. The significant positive associations between rhizosphere microorganisms and metabolites highlighted that metabolite accumulation was a key microbial response mechanism to stress. However, within the complex soil environment, the compensatory actions of microorganisms and metabolites were insufficient to mitigate the detrimental effects of PS NPs and DBP, resulting in continued inhibition of dandelion growth by 38.66 %. Consequently, these findings highlight that soil fungi and metabolism play key roles in responding to stress and influencing crop growth, providing novel insights into the impact of nanoparticle and plasticizer exposure on medicinal plant cultivation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信