Homeostasis of Calnexin Is Essential for the Growth, Virulence, and Hypovirus RNA Accumulation in the Chestnut Blight Fungus

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tao Huang, Xiaoling Ma, Ziqi Zhao, Danna Qin, Weiye Qin, Jinzi Wang, Baoshan Chen, Xipu He
{"title":"Homeostasis of Calnexin Is Essential for the Growth, Virulence, and Hypovirus RNA Accumulation in the Chestnut Blight Fungus","authors":"Tao Huang, Xiaoling Ma, Ziqi Zhao, Danna Qin, Weiye Qin, Jinzi Wang, Baoshan Chen, Xipu He","doi":"10.1111/mmi.15348","DOIUrl":null,"url":null,"abstract":"Calnexin, a calcium-binding protein, promotes correct protein folding and prevents incompletely folded glycopolypeptides from premature oxidation and degradation. <i>Cryphonectria parasitica</i>, an ascomycete fungus responsible for chestnut blight, poses a significant threat to the chestnut forest or orchards worldwide. Although various aspects of calnexin have been investigated, little is known about the impact of fungal viruses. <i>CpCne</i> was identified and characterized in this study, encoding the calnexin in <i>C. parasitica</i>. Strains with deletion or interference of the <i>CpCne</i> gene had a significant reduction in biomass and pathogenicity, and strains with overexpression of the <i>CpCne</i> gene had retarded growth and reduced pathogenicity. Transcriptome analysis showed that the △<i>CpCne</i> mutant had significant changes in the expression of genes related to carbohydrate metabolism, cell wall polysaccharide synthesis and degradation, indicating that <i>CpCne</i> may reduce virulence by affecting the cell wall. Additionally, the △<i>CpCne</i> mutant was sensitive to endoplasmic reticulum (ER) stress, suggesting that <i>CpCne</i> plays an important role in maintaining ER homeostasis. Furthermore, <i>CpCne</i> was also involved in the interaction between <i>C. parasitica</i> and the CHV1-EP713. Deletion or overexpression of the <i>CpCne</i> gene reduced viral RNA accumulation, and deletion of the <i>CpCne</i> gene altered the lipid and carboxylic acid metabolic pathways, thereby interfering with virus replication and assembly. Together, we demonstrated that the homeostasis of calnexin in <i>C. parasitica</i> (CpCne) is essential for hyphal growth and virulence, and revealed its role in viral replication and virulence.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15348","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Calnexin, a calcium-binding protein, promotes correct protein folding and prevents incompletely folded glycopolypeptides from premature oxidation and degradation. Cryphonectria parasitica, an ascomycete fungus responsible for chestnut blight, poses a significant threat to the chestnut forest or orchards worldwide. Although various aspects of calnexin have been investigated, little is known about the impact of fungal viruses. CpCne was identified and characterized in this study, encoding the calnexin in C. parasitica. Strains with deletion or interference of the CpCne gene had a significant reduction in biomass and pathogenicity, and strains with overexpression of the CpCne gene had retarded growth and reduced pathogenicity. Transcriptome analysis showed that the △CpCne mutant had significant changes in the expression of genes related to carbohydrate metabolism, cell wall polysaccharide synthesis and degradation, indicating that CpCne may reduce virulence by affecting the cell wall. Additionally, the △CpCne mutant was sensitive to endoplasmic reticulum (ER) stress, suggesting that CpCne plays an important role in maintaining ER homeostasis. Furthermore, CpCne was also involved in the interaction between C. parasitica and the CHV1-EP713. Deletion or overexpression of the CpCne gene reduced viral RNA accumulation, and deletion of the CpCne gene altered the lipid and carboxylic acid metabolic pathways, thereby interfering with virus replication and assembly. Together, we demonstrated that the homeostasis of calnexin in C. parasitica (CpCne) is essential for hyphal growth and virulence, and revealed its role in viral replication and virulence.

Abstract Image

钙连蛋白的内稳态对板栗疫病菌的生长、毒力和次病毒RNA积累至关重要
钙连接蛋白,钙结合蛋白,促进正确的蛋白质折叠,防止不完全折叠的糖共肽过早氧化和降解。板栗疫病是一种引起板栗疫病的子囊菌真菌,对世界范围内的板栗林或果园造成严重威胁。虽然已经研究了钙连蛋白的各个方面,但对真菌病毒的影响知之甚少。本研究鉴定并鉴定了CpCne编码寄生蜂的钙连连蛋白。缺失或干扰CpCne基因的菌株生物量和致病性显著降低,过表达CpCne基因的菌株生长迟缓,致病性降低。转录组分析显示,△CpCne突变体碳水化合物代谢、细胞壁多糖合成和降解相关基因的表达发生了显著变化,表明CpCne可能通过影响细胞壁来降低毒力。此外,△CpCne突变体对内质网(ER)应激敏感,表明CpCne在维持内质网稳态中起重要作用。此外,CpCne还参与了寄生蜂与CHV1-EP713的相互作用。CpCne基因的缺失或过表达减少了病毒RNA的积累,CpCne基因的缺失改变了脂质和羧酸的代谢途径,从而干扰了病毒的复制和组装。我们证明了C. parasitica (CpCne)中calnexin的稳态对菌丝生长和毒力至关重要,并揭示了其在病毒复制和毒力中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信